1. Home
  2. Browse by Author

Browsing by Author "Silahtar, O."

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Conference Object
    Beam and Ball Plant System Controlling Using Intuitionistic Fuzzy Control
    (Springer Science and Business Media Deutschland GmbH, 2021) Silahtar, O.; Atan, Ö.; Kutlu, F.; Castillo, O.
    In this study, simplified “beam and ball (BNB) system” is controlled using “intuitionistic fuzzy control (IFC)” method. It is aimed to keep the ball on it in balance by applying DC voltage in different magnitudes to the DC motor of the system called “ball and beam plant”, which has a beam on which a DC motor is attached to the middle point and a ball moving without friction. In order to better observe the effect of this new generation controller applied to the system, parameters such as the torque of the motor, the mass of the beam and the ball, internal and external disturbance, friction etc. were ignored and the system is simplified. The position and velocity of the ball on the beam is taken as input for the controller, while the controller output is chosen as a DC voltage. After I-Fuzzification, I-Inference and I-Defuzzification process are performed in controller block, performance and efficiency of the system are discussed in terms of steady state error, setting time, maximum overshoot, chattering. © 2021, IFIP International Federation for Information Processing.
  • Loading...
    Thumbnail Image
    Book Part
    Rendezvous and Docking Control of Satellites Using Chaos Synchronization Method With Intuitionistic Fuzzy Sliding Mode Control
    (Springer Science and Business Media Deutschland GmbH, 2023) Silahtar, O.; Kutlu, F.; Atan, Ö.; Castillo, O.
    In this study, two different controllers have been designed to perform the rendezvous and docking tasks of two nonidentical and noncooperative cubic satellites. Firstly, the motion of cubic satellites was modeled with chaotic equations. After selecting suitable chaotic models, fuzzy sliding mode controller (FSMC) and a new intuitionistic fuzzy sliding mode controller (IFSMC), which are applied to synchronization systems under the same initial conditions, have been designed. It has been observed that both synchronizations reach stability by applying the controllers designed by considering the Lyapunov stability criteria. After a while, a short-term and random disturbance was applied to the synchronization systems and the response of both controllers was observed. The numerical results showed that the synchronization system with both controllers was stable, robust, efficient, fast and chattering-free. However, synchronization system with IFSMC was found to be more robust, faster and more efficient than synchronization system with FSMC. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.
  • Loading...
    Thumbnail Image
    Article
    Transmission and Decryption of the Audio Signal Masked With Ecg by Fdm Method
    (Springer int Publ Ag, 2022) Parlar, I; Almali, M. N.; Atan, O.; Cabuker, A. C.; Silahtar, O.
    Today, the use of these methods as hybrids has provided the motivation to be a solution to important problems, since the existing methods are insufficient at some points in ensuring the security of personal data. In data security, the inability to decrypt and decrypt the signal to be encrypted retrospectively has always been the subject of research in terms of privacy. At this point, it was preferred to use the electrocardiography (ECG) signal, which is a signal that shows the vital signs of the human body and is also difficult to copy. In the study, firstly, the emulator circuit was obtained by using the mathematical model of the ECG signal. With this obtained signal, the audio signals are masked. The audio signal masked on the transmitter side and the signals providing synchronization were transmitted to the receiver side over a single channel using the frequency division multiplexing (FDM) method. Then, the sliding mode control (SMC) method was chosen for the synchronization of the ECG emulator circuits on the receiver and transmitter side. Histogram, spectral, mean square error (MSE), peak signal to noise ratio (PSNR), key space and key sensitivity, NSCR (number of sample change rate), UACI (unified average changing intensity) and PESQ (perceptual evaluation of speech quality) analyses were used to check the accuracy of the system. These analyses showed that the ECG encoding method has faster unit change, reduces synchronization time, minimizes losses and improves the security of the masked signal compared to other methods sent from two channels. Finally, use of an arrhythmia ECG signal for the synchronization signal on both the transmitter and receiver sides, the synchronization of this signal with the SMC method and the testing of a live audio recording in addition to the conversation, distinguishes the study from other existing studies and reveals its originality.