Browsing by Author "Taissariyeva, Kyrmyzy"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Article A Novel Single-Source 13-Level Switched- Capacitor Inverter With Triple Voltage Gain(IEEE-Inst Electrical Electronics Engineers inc, 2025) Taissariyeva, Kyrmyzy; Karakilic, Murat; Mussilimov, Kuanysh; Hatas, HasanIn recent years, the growing demand for efficient voltage boosting solutions has been driven by advancements in renewable energy systems, electric vehicles (EVs), and photovoltaic (PV) arrays. However, conventional magnetic-based inverters remain bulky and inefficient for compact, high-performance applications, limiting their use in emerging technologies. To address this, the objective of this study is to develop a compact, single-source switched-capacitor multilevel inverter (SC-MLI) topology that achieves high voltage gain with minimal component count. The proposed 13-level SC-MLI employs a novel switched-capacitor structure and is evaluated under Natural Level Control (NLC) and Sinusoidal PWM (SPWM) schemes. Theoretical analysis, MATLAB/Simulink simulations, and experimental validation on a 100-1000 W prototype are carried out, along with thermal modeling in PLECS. The results show that the topology achieves a voltage gain of 3, maintains capacitor self-balancing without auxiliary circuits, and reaches a peak efficiency of 97.2% (simulation) and 95.3% (experiment). Moreover, it meets harmonic standards, reduces total harmonic distortion (THD), and outperforms recent single-source designs in terms of accuracy, cost, and control simplicity. This makes the proposed topology highly suitable for grid-connected PV systems, electric vehicle chargers, and compact renewable energy interfaces, with theoretical scalability toward medium- and high-power applications.