Activity and Structure Analysis of Highly Functional Ru-Pt-Ni/AC Nanocatalysts for Efficient Glucose Electrooxidation

dc.authorscopusid 57203167255
dc.authorscopusid 57209605176
dc.authorscopusid 60141842000
dc.authorscopusid 55649660300
dc.authorscopusid 26321516800
dc.contributor.author Ulas, B.
dc.contributor.author Yilmaz, Y.
dc.contributor.author Demir Kıvrak, H.
dc.contributor.author Najri, B.A.
dc.contributor.author Erünal, E.
dc.date.accessioned 2025-10-30T15:28:25Z
dc.date.available 2025-10-30T15:28:25Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Ulas] Berdan, Department of Mining Engineering, Van Yüzüncü Yıl Üniversitesi, Van, Turkey; [Yilmaz] Yonca, Department of Chemical Engineering, Van Yüzüncü Yıl Üniversitesi, Van, Turkey; [Demir Kıvrak] Hilal, Department of Chemical Engineering, Eskişehir Osmangazi Üniversitesi, Eskisehir, Turkey; [Najri] Bassam A., Department of Chemistry, Eskişehir Osmangazi Üniversitesi, Eskisehir, Turkey; [Erünal] Ebru, Department of Chemical Engineering, Gebze Teknik Üniversitesi, Gebze, Turkey en_US
dc.description.abstract A promising Ru-Pt-Ni/AC catalyst for direct glucose fuel cells was developed via the supercritical carbon dioxide deposition method which enabled a uniform distribution of metals, with an average particle size of 3.85 nm. The electrocatalytic activity and stability of the nanocatalysts for glucose electrooxidation were evaluated using chronoamperometry (CA), electrochemical impedance spectroscopy (EIS), and cyclic voltammetry (CV) in alkaline media. Under these conditions, the catalyst exhibited a notably high specific activity of 3.98 mA·cm⁻2 for glucose electrooxidation, significantly surpassing the performance of conventional catalysts. Electrochemical impedance spectroscopy further confirmed the kinetic improvement, showing a clear reduction in charge transfer resistance with increasing potential. Complementary DFT calculations supported the experimental findings by evidencing modifications in surface electrophilicity and their role in activity enhancement. © 2025 Elsevier B.V., All rights reserved. en_US
dc.identifier.doi 10.1007/s12678-025-00991-1
dc.identifier.issn 1868-2529
dc.identifier.issn 1868-5994
dc.identifier.scopus 2-s2.0-105018839991
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s12678-025-00991-1
dc.identifier.uri https://hdl.handle.net/20.500.14720/28810
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Electrocatalysis en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Density Functional Theory en_US
dc.subject Glucose Electrooxidation en_US
dc.subject Trimetallic Catalysts en_US
dc.subject Supercritical Carbon Dioxide Deposition en_US
dc.title Activity and Structure Analysis of Highly Functional Ru-Pt-Ni/AC Nanocatalysts for Efficient Glucose Electrooxidation en_US
dc.type Article en_US
dspace.entity.type Publication

Files