Ecological Niche Modeling Of Acanthamoeba İn Türkiye

dc.authorscopusid 56902529600
dc.authorscopusid 56623195600
dc.authorscopusid 57200395204
dc.authorwosid Artun, Ozan/I-2187-2017
dc.authorwosid Kavur, Hakan/E-7125-2018
dc.contributor.author Kavur, Hakan
dc.contributor.author Evyapan, Gulsah
dc.contributor.author Artun, Ozan
dc.date.accessioned 2025-12-30T16:05:35Z
dc.date.available 2025-12-30T16:05:35Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kavur, Hakan; Artun, Ozan] Cukurova Univ, Karaisali Vocat Sch, Karaisali Adana, Turkiye; [Evyapan, Gulsah] Yuzuncu Yil Univ, Fac Med, Dept Med Biol, Van, Turkiye en_US
dc.description.abstract Acanthamoeba, is an opportunistic pathogenic organism with a global distribution and the potential to cause severe human infections. This study primarily aimed to identify the environmental factors influencing the distribution of Acanthamoeba by analyzing various bioclimatic and topographic variables, and to predict their potential current and future distribution under 2070 climate change scenarios using ecological niche modeling based on the MaxEnt algorithm. Niche modeling was performed on 20 water and 20 soil samples collected from hot springs, swimming pools, parks, and agricultural areas. The rates of positive water samples in Afyon and K & uuml;tahya were 70 and 50%, respectively. We detected 60 and 100% positive rates of soil samples collected in Afyon and K & uuml;tahya, respectively. Niche modeling incorporated 19 bioclimatic variables, with BIO3 (Isothermality), BIO4 (Temperature seasonality), BIO13 (Precipitation of the wettest month), and BIO15 (Precipitation seasonality) identified as the most influential predictors. The model showed high predictive performance, with AUC values of 0.991 and 0.977 for current and future projections, respectively. Results suggest a potential increase in Acanthamoeba distribution in future scenarios, especially in the southwestern region of Afyon and southern K & uuml;tahya. These findings highlight the importance of environmental monitoring and genotypic characterization of Acanthamoeba for public health risk assessment. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1007/s10393-025-01770-6
dc.identifier.issn 1612-9202
dc.identifier.issn 1612-9210
dc.identifier.pmid 41286273
dc.identifier.scopus 2-s2.0-105022892090
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.1007/s10393-025-01770-6
dc.identifier.uri https://hdl.handle.net/20.500.14720/29339
dc.identifier.wos WOS:001621376400001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Ecohealth en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Acanthamoeba en_US
dc.subject Bioclimatic Factors en_US
dc.subject Ecological Niche Model en_US
dc.subject Arcgis en_US
dc.subject Maxent en_US
dc.title Ecological Niche Modeling Of Acanthamoeba İn Türkiye en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article

Files