Impulsive Fractal Sturm–Liouville Equations
| dc.authorscopusid | 6603246569 | |
| dc.authorscopusid | 14023696400 | |
| dc.authorscopusid | 57555731900 | |
| dc.contributor.author | Allahverdiev, Bilender P. | |
| dc.contributor.author | Tuna, Hüseyin | |
| dc.contributor.author | Khalili Golmankhaneh, Ali | |
| dc.date.accessioned | 2025-09-30T16:36:04Z | |
| dc.date.available | 2025-09-30T16:36:04Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Allahverdiev] Bilender P., Department of Mathematics, Khazar University, Baku, Azerbaijan, Research Center of Econophysics, Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan; [Tuna] Hüseyin, Department of Mathematics, Burdur Mehmet Akif Ersoy Üniversitesi, Burdur, Turkey, Research Center of Econophysics, Azerbaijan State University of Economics (UNEC), Baku, Azerbaijan; [Khalili Golmankhaneh] Ali, Department of Physics, Islamic Azad University, Urmia Branch, Urmia, Iran, Department of Mathematics, Van Yüzüncü Yıl Üniversitesi, Van, Turkey | en_US |
| dc.description.abstract | In this study, impulsive fractal Sturm–Liouville problems are considered. Firstly, the symmetric operator corresponding to the problem is obtained. Later, an existence theorem is proved. Finally, an eigenfunction expansion is obtained. © 2025 Elsevier B.V., All rights reserved. | en_US |
| dc.identifier.doi | 10.1007/978-981-96-6038-4_13 | |
| dc.identifier.endpage | 205 | en_US |
| dc.identifier.isbn | 9783031848681 | |
| dc.identifier.isbn | 9783031894978 | |
| dc.identifier.isbn | 9789819630974 | |
| dc.identifier.isbn | 9783031852879 | |
| dc.identifier.isbn | 9788132223009 | |
| dc.identifier.isbn | 9783030679958 | |
| dc.identifier.isbn | 9783319185729 | |
| dc.identifier.isbn | 9783319940595 | |
| dc.identifier.isbn | 9789819748754 | |
| dc.identifier.isbn | 9789819634590 | |
| dc.identifier.issn | 2194-1017 | |
| dc.identifier.issn | 2194-1009 | |
| dc.identifier.scopus | 2-s2.0-105014431274 | |
| dc.identifier.scopusquality | Q4 | |
| dc.identifier.startpage | 187 | en_US |
| dc.identifier.uri | https://doi.org/10.1007/978-981-96-6038-4_13 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/28587 | |
| dc.identifier.volume | 501 PROMS | en_US |
| dc.identifier.wosquality | N/A | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Springer Proceedings in Mathematics and Statistics | en_US |
| dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Discontinuous Equations | en_US |
| dc.subject | Eigenfunction Expansions | en_US |
| dc.subject | Fractal Differential Equations | en_US |
| dc.subject | Green’s Functions | en_US |
| dc.subject | Existence Theorem | en_US |
| dc.subject | Fractals | en_US |
| dc.subject | Liouville Equation | en_US |
| dc.subject | Mathematical Operators | en_US |
| dc.subject | Sturm-Liouville Equation | en_US |
| dc.subject | Sturm-Liouville Problem | en_US |
| dc.subject | Symmetric Operators | en_US |
| dc.subject | Eigenvalues and Eigenfunctions | en_US |
| dc.title | Impulsive Fractal Sturm–Liouville Equations | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication |