Comparing a Human’s and a Multi-Agent System’s Thematic Analysis: Assessing Qualitative Coding Consistency

dc.authorscopusid 57889613800
dc.authorscopusid 57200651663
dc.authorscopusid 57210696892
dc.authorscopusid 57224723719
dc.authorscopusid 57844040700
dc.authorscopusid 59243988400
dc.authorscopusid 60018634300
dc.contributor.author Simon, S.
dc.contributor.author Sankaranarayanan, S.
dc.contributor.author Tajik, E.
dc.contributor.author Borchers, C.
dc.contributor.author Shahrokhian, B.
dc.contributor.author Balzan, F.
dc.contributor.author Celik, B.
dc.date.accessioned 2025-09-03T16:38:42Z
dc.date.available 2025-09-03T16:38:42Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Simon S.] Copenhagen University, Nørregade 10, København, Copenhagen, 1172, Denmark; [Sankaranarayanan S.] Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; [Tajik E.] Florida State University, 222 S. Copeland Street, Tallahassee, 32306, FL, United States; [Borchers C.] Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213, PA, United States; [Shahrokhian B.] Arizona State University, 1151 S Forest Ave, Tempe, United States; [Balzan F.] University of Bologna, Via Zamboni, 33, BO, Bologna, 40126, Italy; [Strauß S.] Ruhr University Bochum, Universitätsstraße 150, Bochum, 44801, Germany; [Viswanathan S.A.] Arizona State University, 1151 S Forest Ave, Tempe, United States; [Ataş A.H.] Galatasaray University, Çırağan Cd. No:36, Beşiktaş/İstanbul, Ortaköy, 34349, Turkey; [Čarapina M.] Zagreb University of Applied Sciences, Vrbik 8, Zagreb, 10000, Croatia; [Liang L.] University of Sydney, Camperdown NSW 2050, Sydney, Australia; [Celik B.] Van Yuzuncu Yil University, Yüzüncü Yıl Kampüsü, Tuşba/Van, Bardakçı, 65090, Turkey en_US
dc.description Google, Gates Foundation, Hewlett Packard Enterprise, Eedi, VitalSource, Duolingo English Test, Springer. en_US
dc.description.abstract Large Language Models (LLMs) have demonstrated fluency in text generation and reasoning tasks. Consequently, the field has probed the ability of LLMs to automate qualitative analysis, including inductive thematic analysis (iTA), previously achieved through human reasoning only. Studies using LLMs for iTA have yielded mixed results so far. LLMs have successfully been used for isolated steps of iTA in hybrid setups. With recent advances in multi-agent systems (MAS) enabling complex reasoning and task execution through multiple, collaborating LLM agents, the first results point towards the possibility of automating sequences of the iTA process. However, previous work especially lacks methodological standards for assessing the reliability and validity of LLM-derived iTA. Thus, in this paper, we propose a method for assessing the quality of iTA systems based on consistency with human coding on a benchmark dataset. We present criteria for benchmark datasets and an expert blind review with this method on two iTA outputs: one iTA conducted by domain experts, and another fully automated with a MAS built on the Claude 3.5 Sonnet LLM. Results indicate a high level of consistency and contribute evidence that complex qualitative analysis methods common in AIED research can be carried out by MAS. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. en_US
dc.identifier.doi 10.1007/978-3-031-98420-4_5
dc.identifier.endpage 73 en_US
dc.identifier.isbn 9783031984198
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-105011948858
dc.identifier.scopusquality Q3
dc.identifier.startpage 60 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-031-98420-4_5
dc.identifier.uri https://hdl.handle.net/20.500.14720/28362
dc.identifier.volume 15879 LNAI en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Agentic LLMs en_US
dc.subject Claude 3.5 Sonnet en_US
dc.subject Inductive Analysis en_US
dc.subject Large Language Models en_US
dc.subject Multi-Agent Systems en_US
dc.subject Qualitative Coding en_US
dc.subject Thematic Analysis en_US
dc.title Comparing a Human’s and a Multi-Agent System’s Thematic Analysis: Assessing Qualitative Coding Consistency en_US
dc.type Conference Object en_US
dspace.entity.type Publication

Files