YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Employing Machine Learning To Analyze Nsaids Drug Similarity Via Sombor Invariants

dc.authorscopusid 57203389002
dc.authorscopusid 57197852070
dc.authorscopusid 35185892900
dc.contributor.author Virk, A.U.R.
dc.contributor.author Ahmed, I.
dc.contributor.author Cancan, M.
dc.date.accessioned 2025-05-10T16:55:23Z
dc.date.available 2025-05-10T16:55:23Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Virk A.U.R., Department of Mathematics, University of Management and Technology, Lahore, Pakistan; Ahmed I., University of Agriculture, Burewala Campus, Faisalabad, Pakistan; Cancan M., Faculty of Education, Yuzuncu Yil University, Van, Turkey en_US
dc.description.abstract This study introduces a novel approach to investigating Sombor indices and applying machine learning methods to assess the similarity of non-steroidal anti-in ammatory drugs (NSAIDs). The research aims to predict the structural similarities of nine commonly prescribed NSAIDs using a machine learning technique, speci cally a linear regression model. Initially, Sombor indices are calculated for nine different NSAID drugs, providing numerical representations of their molecular structures. These indices are then used as features in a linear regression model trained to predict the similarity values of drug combinations. The model's prediction performance is evaluated by comparing the predicted similarity values with the actual similarity values. Python programming is employed to verify accuracy and conduct error analysis. © 2024 The Author(s). Published by Combinatorial Press. en_US
dc.identifier.doi 10.61091/um121-08
dc.identifier.endpage 135 en_US
dc.identifier.issn 0315-3681
dc.identifier.scopus 2-s2.0-85215404880
dc.identifier.scopusquality Q4
dc.identifier.startpage 105 en_US
dc.identifier.uri https://doi.org/10.61091/um121-08
dc.identifier.uri https://hdl.handle.net/20.500.14720/3484
dc.identifier.volume 121 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Utilitas Mathematica Publishing Inc. en_US
dc.relation.ispartof Utilitas Mathematica en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Liner Regression Model en_US
dc.subject Machine Learning Algorithm en_US
dc.subject Nonsteroidal Anti-In Ammatory Drugs (Nsaids) en_US
dc.subject Sombor Index en_US
dc.title Employing Machine Learning To Analyze Nsaids Drug Similarity Via Sombor Invariants en_US
dc.type Article en_US

Files