Electrochemical Treatment of Textile Industry Wastewater and Statistical Optimization of System Performance
Abstract
Tekstil endüstrisi yüksek oranda organik yük, yüzey aktif madde, kimyasal oksijen ihtiyacı (KOİ), tuz, boya ve diğer bileşikleri içeren atıksu üretmesi nedeniyle önemli bir çevre sorunu oluşturmaktadır. Bu çalışmada, giderek arıtımı önem kazanan tekstil endüstrisi atıksularının arıtımında başarı ile uygulanan elektrokimyasal proseslerin etkinliğini incelemek ve sistem optimizasyonunu istatistiksel ve matematiksel olarak sağlamak amaçlanmıştır. Tekstil atıksuyu kesikli sistemde peroksi-koagülasyon prosesi ile arıtılmıştır. Elektrokimyasal sistem için grafit elektrot katot, demir elektrot ise anot olarak seçilmiştir. Optimizasyon, Design Expert programı ile Cevap Yüzey Yönteminin (CYY) yaygın bir kullanımı olan Merkezi Kompozit Tasarım (MKT) tarafından sağlanmıştır. Yüzey cevabı olarak KOİ giderimi seçilmiş olup, sistem performansını etkileyen önemli bağımsız parametreler akım şiddeti (A), atıksu başlangıç pH değeri, reaksiyon süresi (dk) ve destek elektrolit konsantrasyonu (NaCl) (M) olarak seçilmiştir. Program çıktılarından elde edilen optimum koşullar pH 6.10, NaCl konsatrasyonu 0.14 M, akım şiddeti 9.54 A ve reaksiyon süresi 84.60 dk olarak tespit edilmiştir. Bu koşullar altında elde edilen maksimum KOİ giderim verimi % 83.87 olarak hesaplanmıştır. Bu sonuç deneyler ile doğrulanmıştır. Optimizasyon sonuçları en çok bilinen kinetik modellere uygulanarak bu sonuçların, 0.9992 korelasyon katsayısı (R2) değeri ile en çok BMG kinetik modeli ile uyum sağladığı saptanmıştır.
The textile industry poses a crucial environmental problem as it produces wastewater containing high organic load, surfactant, chemical oxygen demand (COD), salt, dye and other compounds. This study, it is aimed to examine the effectiveness of successfully applied electrochemical processes in the treatment of textile industry wastewater, which is becoming increasingly important, and to provide system optimization statistically and mathematically. Textile wastewater was purified by a peroxy-coagulation process in batch system. For the electrochemical system, the graphite electrode was chosen as the cathode and the iron electrode as the anode. Optimization was provided by the Design Expert program and Central Composite Design (CCD), a common use of the Response Surface Method (RSM). COD removal was chosen as the surface response, and the independent variables affecting the system performance were selected as current intensity (A), wastewater initial pH value, reaction time (min) and supporting electrolyte concentration (M). The optimum conditions obtained from the program outputs were determined as pH 6.10, NaCl concentration 0.14 M, current intensity 9.54 A and reaction time 84.60 min. The maximum COD removal efficiency obtained under these conditions was calculated as 83.87%. This result has been confirmed by experiments. Optimization results were applied to the most known kinetic models and it was determined that these results were most compatible with the BMG kinetic model with a correlation coefficient (R2) value of 0.9992.
The textile industry poses a crucial environmental problem as it produces wastewater containing high organic load, surfactant, chemical oxygen demand (COD), salt, dye and other compounds. This study, it is aimed to examine the effectiveness of successfully applied electrochemical processes in the treatment of textile industry wastewater, which is becoming increasingly important, and to provide system optimization statistically and mathematically. Textile wastewater was purified by a peroxy-coagulation process in batch system. For the electrochemical system, the graphite electrode was chosen as the cathode and the iron electrode as the anode. Optimization was provided by the Design Expert program and Central Composite Design (CCD), a common use of the Response Surface Method (RSM). COD removal was chosen as the surface response, and the independent variables affecting the system performance were selected as current intensity (A), wastewater initial pH value, reaction time (min) and supporting electrolyte concentration (M). The optimum conditions obtained from the program outputs were determined as pH 6.10, NaCl concentration 0.14 M, current intensity 9.54 A and reaction time 84.60 min. The maximum COD removal efficiency obtained under these conditions was calculated as 83.87%. This result has been confirmed by experiments. Optimization results were applied to the most known kinetic models and it was determined that these results were most compatible with the BMG kinetic model with a correlation coefficient (R2) value of 0.9992.
Description
Keywords
Kimya Mühendisliği, Cevap yüzey yöntemi, Elektrokimyasal yöntem, Optimizasyon, Tekstil atıkları, Chemical Engineering, Response surface methodology, Electrochemical method, Optimization, Textile waste
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
104