YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Bayesian Parameter Estimation for Geometric Process With Rayleigh Distribution

dc.contributor.author Yilmaz, Asuman
dc.date.accessioned 2025-05-10T17:57:52Z
dc.date.available 2025-05-10T17:57:52Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Van Yüzüncü Yil Üni̇versi̇tesi̇ en_US
dc.description.abstract The main purpose of this study is to deal with the parameter estimation problem for the geometric process (GP) when the distribution of the first occurrence time of an event is assumed to be Rayleigh. For this purpose, maximum likelihood and Bayesian parameter estimation methods are discussed. Lindley and MCMC approximation methods are used in Bayesian calculations. Additionally, a novel method called the Modified-Lindley approximation has been proposed as an alternative to the Lindley approximation. An extensive simulation study was conducted to compare the performances of the prediction methods. Finally, a real data set is analyzed for illustrative purposes. en_US
dc.identifier.doi 10.17798/bitlisfen.1433870
dc.identifier.endpage 491 en_US
dc.identifier.issn 2147-3129
dc.identifier.issn 2147-3188
dc.identifier.issue 2 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 482 en_US
dc.identifier.trdizinid 1245850
dc.identifier.uri https://doi.org/10.17798/bitlisfen.1433870
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1245850/bayesian-parameter-estimation-for-geometric-process-with-rayleigh-distribution
dc.identifier.uri https://hdl.handle.net/20.500.14720/20187
dc.identifier.volume 13 en_US
dc.identifier.wosquality N/A
dc.institutionauthor Yilmaz, Asuman
dc.language.iso en en_US
dc.relation.ispartof Bitlis Eren Üniversitesi Fen Bilimleri Dergisi en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Matematik en_US
dc.subject İstatistik Ve Olasılık en_US
dc.title Bayesian Parameter Estimation for Geometric Process With Rayleigh Distribution en_US
dc.type Article en_US

Files