On the Determination of the Number of Graphes Which Are Isomorphic To a Linear Graph With the Help of the Group
No Thumbnail Available
Date
2006
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
ÖZETGRUP YARDIMIYLA B R L NEER GRAFA ZOMORF OLANGRAFLARIN SAYISININ BEL RLENMES ÜZER NEUVAÇ N, GürginYüksek Lisans Tezi, Matematik Anabilim DalıTez Danışmanı: Yrd. Doç. Dr. M. Şerif ALDEM REylül 2006, 24 SayfaGraf Teorisi veya Çizge Kuramı olarak da tanımlanan bu kurammatematiğin çeşitli dallarında ile fizikte elektrik devreleri problemlerinde, kimyadaorganik bağların gösterimi ve çözümlerinde ve mühendislik alanında çok sıkkullanılan bir kuramdır. Özellikle fuzzy graflar günümüzde hemen hemen tüm bilimdallarında kullanılmaktadır. Bu yöntemin kullanılması son derece kullanışlı olmaklabirlikte problemler daha kolay çözülebilmektedir.Bu çalışmamız beş bölümden oluşmakta olup birinci bölümde grafkuramının oluşumu ve süreci verilerek yapılmış çalışmalar öncüleri ile birlikteverilmiştir.kinci bölümde konu ile ilgili yazılmış makaleler derlenip toparlanarakkaynak bildirişi kısmı oluşturulmuştur.Üçüncü bölümde graf ve gruplarla ilgili temel tanımlara yer verilmiştir.Bu çalışmanın dördüncü bölümünde, verilen bir buklesiz lineer G grafaizomorf olan G grafın sayısı bu grafa ait grubun mertebesine eşit olduğu gösterildi.Son bölüm, beşinci bölümde, ise bulduğumuz bazı sonuçlara yerverilmiştir.Anahtar kelimeler: zomorf grafların sayısı, Lineer grafın grubui
ABSTRACTON THE DETERMINATION OF THE NUMBER OF GRAPHES WHICHARE ISOMORPHIC TO A LINEAR GRAPH WITH THE HELP OF THEGROUPUVAÇ N, GürginMsc, Mathematics Mainscience BranchSupervisor: Assist. Prof. Dr. M. Şerif ALDEM RSeptember 2006, 24 pagesGraph Theory is a theory which is used on a widespred scale in variousbranches of mathematics, in the problems of electrical circles in physics, in theillustrations and sollutions of organic bonds in chemistry and in vorious applicationsof egnineering fields, namely in fuzzy graphes. In almost every brach of sciences, ithas a widespread use. Means and modes based this application are very useful, andproblems can be solved with ease.This study is composed of five sections. In the first section, the constitutionof graph theory together with its process has been demonstradet, and studies relatedwith this topic have been referred.In the second section, articles related with the topic have been compiled andbibliographic accounts have been given.In the third part, fundamental definitions on graphes and groups have beenmade.In the fourthy section of this study, the number of G graph which isisomorpich to linear G graph which has no loop has been shown to be equal to thelevel of the group belonging to this graph.In the fifth section some of the data belonging to our conclusions have beenpresented.Key words: The number of isomorphic graphes, Linear graph group.iii
ABSTRACTON THE DETERMINATION OF THE NUMBER OF GRAPHES WHICHARE ISOMORPHIC TO A LINEAR GRAPH WITH THE HELP OF THEGROUPUVAÇ N, GürginMsc, Mathematics Mainscience BranchSupervisor: Assist. Prof. Dr. M. Şerif ALDEM RSeptember 2006, 24 pagesGraph Theory is a theory which is used on a widespred scale in variousbranches of mathematics, in the problems of electrical circles in physics, in theillustrations and sollutions of organic bonds in chemistry and in vorious applicationsof egnineering fields, namely in fuzzy graphes. In almost every brach of sciences, ithas a widespread use. Means and modes based this application are very useful, andproblems can be solved with ease.This study is composed of five sections. In the first section, the constitutionof graph theory together with its process has been demonstradet, and studies relatedwith this topic have been referred.In the second section, articles related with the topic have been compiled andbibliographic accounts have been given.In the third part, fundamental definitions on graphes and groups have beenmade.In the fourthy section of this study, the number of G graph which isisomorpich to linear G graph which has no loop has been shown to be equal to thelevel of the group belonging to this graph.In the fifth section some of the data belonging to our conclusions have beenpresented.Key words: The number of isomorphic graphes, Linear graph group.iii
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
33