YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Approach Artificial Neural Network for Nonlinear Principal Components Analysis

No Thumbnail Available

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

Abstract

Doğrusal Olmayan Temel Bileşenler Analizi (DOTBA), aralarında doğrusal veya doğrusal olmayan ilişki bulunan veri kümeleri için rakamsal ve görsel sonuçlar veren açıklayıcı bir boyut indirgeme yöntemidir. DOTBA'da, sürekli değişkenlerin yanı sıra, kategorik ve sıralı değişkenler de aynı anda analize dâhil edilebilir. Analizde gözlenen değişkenler arasındaki ilişkilerin doğrusal olduğu varsayımına gerek yoktur. Bu çalışmada DOTBA için yapay sinir ağları yaklaşımı açıklanarak uygulama yapılmıştır. Uygulamada veri seti olarak 422 hastaya ait 19 değişkenli hipotiroidi verisi kullanılmıştır. Yapay sinir ağlarında temel bileşenler analizi ile birlikte yapay sinir ağlarında doğrusal olmayan temel bileşenler analizi kullanılarak elde edilen sonuçlar, tablo ve grafikler halinde sunularak yorumlanmıştır. İlk iki temel bileşen, DOTBA' da toplam varyansın %95.65'ini açıklarken, TBA'da %90.08'ini açıklamıştır. Sonuç olarak, DOTBA'nın TBA'ya göre yüksek bir varyans açıklama oranı ile başarılı sonuçlar verdiği ve böylece ileriye dönük yapılacak tahminlerde kullanılabileceği vurgulanmıştır. Anahtar Kelimeler: Doğrusal Olmayan Temel BileĢenler Analizi, Hipotiroidi, Temel BileĢenler Analizi
Nonlinear Principal Component Analysis (NLPCA) is one of the explanatory dimension reducing technique and presents numerical and graphical results for variable set included linear or nonlinear relationships. Nonlinear Principal Component Analysis, categorical and ordinal variables as well as numerical variables can be included to analysis. Linearity assumption for observed variables does not need for Nonlinear Principal Component Analysis. In this study, artificial neural network approach for NLPCA was explained and applied. The hypothyroid data with 19 variables from 422 patients were used in the application. The results obtained using Principle Component Analysis (PCA) together with NLPCA were interpreted by presenting in tables and graphics. The first two principle components explained 95.65% of the total variance in the NLPCA, while they explained 90.08% of the total variance in the PCA. As a result, it was emphasized that NLPCA gives satisfactory results with a high variance explanation rate compared to PCA and thus it can be used for future predictions. Key Words: Hypothyroid, Nonlinear Principal Components Analysis, Principal Components Analysis

Description

Keywords

Biyoistatistik, Biyoistatistik, Doğrusal olmayan analiz, Hipotiroidizm, Temel bileşenler analizi, Yapay sinir ağları, Biostatistics, Bioistatistics, Nonlinear analysis, Hypothyroidism, Principal components analysis, Artificial neural networks

Turkish CoHE Thesis Center URL

WoS Q

Scopus Q

Source

Volume

Issue

Start Page

End Page

86

Collections