YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Object Based Classification of Crop Pattern Using Multi-Temporal Satellite Dataset in Multi-Cropped Agricultural Areas: Lower Seyhan Plane Case Study

dc.authorscopusid 57190443997
dc.authorscopusid 35200042700
dc.authorscopusid 57207870334
dc.contributor.author Yeler, O.
dc.contributor.author Şatir, O.
dc.contributor.author Berberoğlu, S.
dc.date.accessioned 2025-05-10T17:01:06Z
dc.date.available 2025-05-10T17:01:06Z
dc.date.issued 2017
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Yeler O., Yüzüncü Yıl Üniversitesi, Muradiye Meslek Yüksekokulu, Park ve Bahçe Bitkileri Bölümü, Van, Turkey; Şatir O., Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Peyzaj Mimarlığı Bölümü, Van, Turkey; Berberoğlu S., Çukurova Üniversitesi, Ziraat Fakültesi, Peyzaj Mimarlığı Bölümü, Adana, Turkey en_US
dc.description.abstract Lower Seyhan Plane (LSP) is one of the most productive agricultural basins of Turkey and it covers main part of the Çukurova Region. The crop productivity in the study area is much more than most developed countries and Turkey’s average productions. Ideal spatial conditions such as climate, soil and transportation for agriculture creates these productive lands. The aim of this research was to define winter and summer crop pattern using multi-temporal Landsat satellite dataset applying object based classification technique. Crop pattern was detected according to 2013 hydrological term (October 2012 – September 2013) as winter and summer. Landsat dataset was defined according to the greenest and cloud free times of the crops. Object based classification was applied because of regular parcel distribution of the crops. As a result of the study; general kappa coefficiency of LSP was obtained as 0.9. According to the results, it was found that while wheat, potato and onion for winter crops were determined as areal distribution, corn and cotton as first crop and corn as second crop in summer season. © 2017, Centenary University. All rights reserved. en_US
dc.identifier.doi 10.29133/yyutbd.305090
dc.identifier.endpage 9 en_US
dc.identifier.issn 1308-7576
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85017630465
dc.identifier.scopusquality Q3
dc.identifier.startpage 1 en_US
dc.identifier.uri https://doi.org/10.29133/yyutbd.305090
dc.identifier.uri https://hdl.handle.net/20.500.14720/5049
dc.identifier.volume 27 en_US
dc.identifier.wosquality N/A
dc.language.iso tr en_US
dc.publisher Centenary University en_US
dc.relation.ispartof Yuzuncu Yil University Journal of Agricultural Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Agricultural Crop Pattern en_US
dc.subject Cukurova Region en_US
dc.subject Landsat Dataset en_US
dc.subject Lower Seyhan Plane en_US
dc.subject Object Based Classification en_US
dc.title Object Based Classification of Crop Pattern Using Multi-Temporal Satellite Dataset in Multi-Cropped Agricultural Areas: Lower Seyhan Plane Case Study en_US
dc.type Article en_US

Files