YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

A Comparative Study of Segmentation Algorithms for Intracerebral Hemorrhage Detection

dc.contributor.author Canayaz, Murat
dc.contributor.author Milanlıoğlu, Aysel
dc.contributor.author Sehrıbanoglu, Sanem
dc.contributor.author Yalın, Abdulsabır
dc.contributor.author Yokuş, Adem
dc.date.accessioned 2025-05-10T17:57:37Z
dc.date.available 2025-05-10T17:57:37Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Van Yüzüncü Yil Üni̇versi̇tesi̇,Van Yüzüncü Yil Üni̇versi̇tesi̇,Van Yüzüncü Yil Üni̇versi̇tesi̇,Van Yüzüncü Yil Üni̇versi̇tesi̇,Van Yüzüncü Yil Üni̇versi̇tesi̇ en_US
dc.description.abstract Segmentation in the medical field has special importance. One of the purposes of segmentation is to visualize the area affected by the disease after disease detection in any organ. In recent years, efficient studies have been carried out for this purpose with deep learning models. In this study, three segmentation algorithms were compared for the detection of hemorrhage in brain parenchyma. These algorithms are the most familiar: U-net, LinkNet, and FPN algorithms. For the background of these algorithms, five backbones consisting of deep learning models were used. These backbones are Resnet34, ResNet50, ResNet169, EfficientNetB0, and EfficientNet B1. An original dataset was created for the study. The dataset in the study was verified by experts. In the study, the Dice coefficient and Jaccard index, which are the most common metrics in the medical field, were chosen as evaluation metrics. Considering the performance results of the algorithms, the FPN architecture with a 0.9495 Dice coefficient value for the training data and LinkNet with a 0.9244 Dice coefficient for the test data gave the best results. In addition, EfficientNetB1 provided the best results among the backbones used. When the results obtained were examined, better segmentation performance was obtained than in existing studies. en_US
dc.identifier.doi 10.62520/fujece.1423648
dc.identifier.endpage 94 en_US
dc.identifier.issn 2822-2881
dc.identifier.issue 2 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 75 en_US
dc.identifier.trdizinid 1240943
dc.identifier.uri https://doi.org/10.62520/fujece.1423648
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1240943/a-comparative-study-of-segmentation-algorithms-for-intracerebral-hemorrhage-detection
dc.identifier.uri https://hdl.handle.net/20.500.14720/20076
dc.identifier.volume 3 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.relation.ispartof Firat University journal of experimental and computational engineering (Online) en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yazılım Mühendisliği en_US
dc.subject Patoloji en_US
dc.subject Mikrobiyoloji en_US
dc.subject Nörolojik Bilimler en_US
dc.title A Comparative Study of Segmentation Algorithms for Intracerebral Hemorrhage Detection en_US
dc.type Article en_US

Files