YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Catsumm: Extractive Text Summarization Based on Spectral Graph Partitioning and Node Centrality

dc.contributor.author Karcı, Ali
dc.contributor.author Uçkan, Taner
dc.contributor.author Hark, Cengiz
dc.date.accessioned 2025-05-10T17:53:41Z
dc.date.available 2025-05-10T17:53:41Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp İnönü Üni̇versi̇tesi̇,Van Yüzüncü Yil Üni̇versi̇tesi̇,Malatya Turgut Özal Üni̇versi̇tesi̇ en_US
dc.description.abstract In this paper, we introduce CatSumm (Cengiz, Ali, Taner Summarization), a novel method for multi-document document summarisation. The suggested method forms a summarization according to three main steps: Representation of input texts, the main stages of the CatSumm model, and sentence scoring. A Text Processing software, is introduced and used to protect the semantic loyalty between word groups at stage of representation of input texts. Spectral Sentence Clustering (SSC), one of the main stages of the CatSumm model, is the summarization process obtained from the proportional values of the sub graphs obtained after spectral graph segmentation. Obtaining super edges is another of the main stages of the method, with the assumption that sentences with weak values below a threshold value calculated by the standard deviation (SD) cannot be included in the summary. Using the different node centrality methods of the CatSumm approach, it forms the sentence rating phase of the recommended summarising approach, determining the significant nodes and hence significant nodes. Finally, the result of the CatSumm method for the purpose of text summarisation within the in the research was measured ROUGE metrics on the Document Understanding Conference (DUC-2004, DUC-2002) datasets. The presented model produced 44.073%, 53.657%, and 56.513% summary success scores for abstracts of 100, 200 and 400 words, respectively. en_US
dc.identifier.doi 10.17798/bitlisfen.949052
dc.identifier.endpage 1365 en_US
dc.identifier.issn 2147-3129
dc.identifier.issn 2147-3188
dc.identifier.issue 4 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 1349 en_US
dc.identifier.trdizinid 499903
dc.identifier.uri https://doi.org/10.17798/bitlisfen.949052
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/499903/catsumm-extractive-text-summarization-based-on-spectral-graph-partitioning-and-node-centrality
dc.identifier.uri https://hdl.handle.net/20.500.14720/18832
dc.identifier.volume 10 en_US
dc.identifier.wosquality N/A
dc.language.iso tr en_US
dc.relation.ispartof Bitlis Eren Üniversitesi Fen Bilimleri Dergisi en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yazılım Mühendisliği en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Teori Ve Metotlar en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yapay Zeka en_US
dc.title Catsumm: Extractive Text Summarization Based on Spectral Graph Partitioning and Node Centrality en_US
dc.type Article en_US

Files