YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Using the Poisson and Negative Binomial Regression Modeling of Zooplankton Aquatic Insect Count Data

dc.authorscopusid 57193953813
dc.authorscopusid 22036852300
dc.authorscopusid 55372727900
dc.contributor.author Erdinç, S.
dc.contributor.author Yeşilova, A.
dc.contributor.author Ser, G.
dc.date.accessioned 2025-05-10T17:01:05Z
dc.date.available 2025-05-10T17:01:05Z
dc.date.issued 2017
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Erdinç S., Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Zootekni Bölümü, Van, Turkey; Yeşilova A., Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Zootekni Bölümü, Van, Turkey; Ser G., Yüzüncü Yıl Üniversitesi, Ziraat Fakültesi, Zootekni Bölümü, Van, Turkey en_US
dc.description.abstract The aim of this study was to use for Poisson and negative binomial regressions in the modelling of zooplankton aquatic insect counts. Poisson regression is frequently used to analyze for dependent variable based on count data. In data sets, generally overdispersion is seen. In such cases, applying Poisson regression causes biased parameter estimations and standart errors. When there is overdispersion in data set, it is better to use negative binomial regression model. In negative binomial regression model, parameter estimations are obtained by considering the effect that stems from overdispersion. The overdispersion and zero-inflated parameter levels range was obtained to be quite high. All of the dependent variables were statistically significant on zooplankton aquatic insect counts (p<0.01) in the negative binomial regression. In the case of station of Haraba was taken as the reference level, most zooplankton aquatic insect counts was at the Yolcati station (7.972 times more), while at least zooplankton aquatic insect counts was at the Çarpanak station (99.59% less) (p<0.01). In the case of month of september was taken as the reference level, zooplankton density in August was found to be higher compared to other months (p<0.01). Because of the overdispersion had a significant effect, negative binomial regression was better results than the Poisson regression. © 2017, Centenary University. All rights reserved. en_US
dc.identifier.doi 10.29133/yyutbd.285709
dc.identifier.endpage 64 en_US
dc.identifier.issn 1308-7576
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85017655436
dc.identifier.scopusquality Q3
dc.identifier.startpage 58 en_US
dc.identifier.uri https://doi.org/10.29133/yyutbd.285709
dc.identifier.uri https://hdl.handle.net/20.500.14720/5037
dc.identifier.volume 27 en_US
dc.identifier.wosquality N/A
dc.language.iso tr en_US
dc.publisher Centenary University en_US
dc.relation.ispartof Yuzuncu Yil University Journal of Agricultural Sciences en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Negative Binomial Regression en_US
dc.subject Numbers Of Zooplankton en_US
dc.subject Overdispersion en_US
dc.subject Poisson Regression en_US
dc.title Using the Poisson and Negative Binomial Regression Modeling of Zooplankton Aquatic Insect Count Data en_US
dc.type Article en_US

Files