YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Halloysite-Carboxymethyl Cellulose Cryogel Composite From Natural Sources

No Thumbnail Available

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Abstract

In this work, novel superporous composite cryogel using natural source such as carboxymethyl cellulose (CMC) and halloysite nanotubes (Hal nanotubes) was prepared. The composite was prepared via cryogelation method including the Hal nanotubes within polymeric matrices before cryogelation. A series of the Hal nanotubes/carboxymethyl cellulose composite were prepared by varying the used amounts of crosslinker, and Hal nanotubes amounts. Additionally, Hal nanotubes were modified with different modifying agent such as (3-aminopropyl)triethoxysilane (APTES), (3-chloro-2-hydroxypropyl)trimethylammonium chloride (CHPTACI), polyethylenimine (PEI), epichlorohydrin (ECH), diethylenetriamine (DETA), taurine (TA), and tris(2-aminoethyl)amine (TAEA), these modified Hal nanotubes were used in CMC cryogel composite preparation. Characterization of the synthesized materials was performed by Scanning and Transmission Electron Microscopy (SEM and TEM), Zeta Potential (ZP) measurement, Thermogravimetric Analysis (TGA), Fourier Transform Infrared (FT-IR) spectroscopic measurement and Surface area and Porosity Analyzer. © 2017 Elsevier B.V.

Description

Keywords

Carboxymethyl Cellulose Cryogel/Hydrogel, Chemical Modification, Clay Composite Cryogel/Hydrogel, Halloysite Nanotube, Super Porous

Turkish CoHE Thesis Center URL

WoS Q

Q1

Scopus Q

Q1

Source

Applied Clay Science

Volume

140

Issue

Start Page

66

End Page

74