YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Base Polynomials for Degree and Distance Based Topological Invariants of N-Bilinear Straight Pentachain

dc.authorid Farahani, Mohammad Reza/0000-0003-2969-4280
dc.authorwosid Ediz, Süleyman/V-5386-2017
dc.authorwosid Sardar, Muhammad/Abb-3272-2020
dc.authorwosid Cancan, Murat/Aab-4391-2020
dc.authorwosid Shabbir, Khurram/Aah-1312-2019
dc.authorwosid Farahani, Mohammad Reza/M-5963-2017
dc.contributor.author Nizami, Abdul Rauf
dc.contributor.author Shabbir, Khurram
dc.contributor.author Sardar, Muhammad Shoaib
dc.contributor.author Qasim, Muhammad
dc.contributor.author Cancan, Murat
dc.contributor.author Ediz, Suleyman
dc.date.accessioned 2025-05-10T17:14:01Z
dc.date.available 2025-05-10T17:14:01Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Nizami, Abdul Rauf] Univ Cent Punjab, Dept Math, Lahore, Pakistan; [Shabbir, Khurram; Qasim, Muhammad] Univ Lahore, Dept Math, Govt Coll, Lahore 54000, Pakistan; [Sardar, Muhammad Shoaib] Riphah Int Univ, Dept Math, Faisalabad Campus, Faisalabad 38000, Pakistan; [Sardar, Muhammad Shoaib] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China; [Cancan, Murat; Ediz, Suleyman] Van Yuzuncu Yil Univ, Fac Educ, Dept Math Educ, TR-65090 Van, Turkey en_US
dc.description Farahani, Mohammad Reza/0000-0003-2969-4280 en_US
dc.description.abstract Degree and distance-based graph polynomials are important not only as graph invariants but also for their applications in physics, chemistry, and pharmacy. The present paper is concerned with the Hosoya and Schultz polynomials of n-bilinear straight pentachain. It was observed that computing these polynomials directly by definitions is extremely difficult. Thus, we follow the divide and conquer rule and introduce the idea of base polynomials. We actually split the vertices into disjoint classes and then wrote the number of paths in terms of polynomials for each class, which ultimately serve as bases for Hosoya and Schultz polynomials. We also recover some indices from these polynomials. Finally, we give an example to show how these polynomials actually work. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1080/02522667.2021.1903202
dc.identifier.endpage 1495 en_US
dc.identifier.issn 0252-2667
dc.identifier.issn 2169-0103
dc.identifier.issue 7 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 1479 en_US
dc.identifier.uri https://doi.org/10.1080/02522667.2021.1903202
dc.identifier.uri https://hdl.handle.net/20.500.14720/8373
dc.identifier.volume 42 en_US
dc.identifier.wos WOS:000735097700005
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bilinear Straight Pentachain en_US
dc.subject Schultz Polynomials en_US
dc.subject Hosoya Polynomial en_US
dc.title Base Polynomials for Degree and Distance Based Topological Invariants of N-Bilinear Straight Pentachain en_US
dc.type Article en_US

Files