YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Resistance Distance in Some Classes of Rooted Product Graphs Obtained by Laplacian Generalized Inverse Method

dc.authorwosid Ediz, Süleyman/V-5386-2017
dc.authorwosid Alaeiyan, Mehdi/Hjy-6022-2023
dc.authorwosid Cancan, Murat/Aab-4391-2020
dc.authorwosid Sardar, Muhammad/Abb-3272-2020
dc.authorwosid Farahani, Mohammad/M-5963-2017
dc.contributor.author Sardar, Muhammad Shoaib
dc.contributor.author Alaeiyan, Mehdi
dc.contributor.author Farahani, Mohammad Reza
dc.contributor.author Cancan, Murat
dc.contributor.author Ediz, Suleyman
dc.date.accessioned 2025-05-10T17:14:04Z
dc.date.available 2025-05-10T17:14:04Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Sardar, Muhammad Shoaib] Riphah Int Univ, Dept Math, Faisalabad Campus, Faisalabad 38000, Pakistan; [Sardar, Muhammad Shoaib] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China; [Alaeiyan, Mehdi; Farahani, Mohammad Reza] Iran Univ Sci & Technol IUST, Dept Math, Tehran 16844, Iran; [Cancan, Murat; Ediz, Suleyman] Van Yuzuncu Yil Univ, Fac Educ, Dept Math Educ, TR-65090 Van, Turkey en_US
dc.description.abstract In mathematics, a graph product is a binary operation on a graph. Graph products have been extensively researched and have many important applications in many fields. Here we discuss one graph-theoretical product. Let H be a labeled graph on n vertices and let G be a rooted graph. Denote by H G the graph obtained by identifying the root vertex of the ith copy of G with the ith vertex of H. H G is called by the rooted product of H by G [C. Godsil, B. D. McKay, A new graph product and its spectrum, Bull. Aust. Math. Soc. 18 (1978)]. The resistance distance between two vertices i and j of a graph G is defined as the effective resistance between the two vertices when a unit resistor replaces each edge of G. Let H-k;n, C-m, S-k, P-k and K-u be the Harary, cycle, star, path and complete graphs respectively. In this paper, the symmetric {1}-inverses of Laplacian matrices for graphs (H-k;n circle C-m), (H-k;n circle K-u), (C-n circle S-k) and (C-n circle P-k) are studied, based on which the resistance distances of any two vertices in these graphs can be obtained. In addition, some examples are provided as applications that illustrate the functionality of the suggested method. en_US
dc.description.woscitationindex Emerging Sources Citation Index
dc.identifier.doi 10.1080/02522667.2021.1899210
dc.identifier.endpage 1467 en_US
dc.identifier.issn 0252-2667
dc.identifier.issn 2169-0103
dc.identifier.issue 7 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 1447 en_US
dc.identifier.uri https://doi.org/10.1080/02522667.2021.1899210
dc.identifier.uri https://hdl.handle.net/20.500.14720/8389
dc.identifier.volume 42 en_US
dc.identifier.wos WOS:000735097700003
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Taylor & Francis Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Laplacian Matrix en_US
dc.subject Generalized Inverse en_US
dc.subject Moore-Penrose Inverse en_US
dc.subject Schur Complement en_US
dc.subject Resistance Distance en_US
dc.title Resistance Distance in Some Classes of Rooted Product Graphs Obtained by Laplacian Generalized Inverse Method en_US
dc.type Article en_US

Files