YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Effect of The Data Type on Anfis Results, Case Study Temperature and Relative Humidity

dc.contributor.author Salihi, Pinar
dc.contributor.author Üçler, Nadire
dc.date.accessioned 2025-05-10T17:17:39Z
dc.date.available 2025-05-10T17:17:39Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Van Yüzüncü Yil Üni̇versi̇tesi̇,Van Yüzüncü Yil Üni̇versi̇tesi̇ en_US
dc.description.abstract In this study, the Adaptive Neuro-Fuzzy Inference System (ANFIS) was used to create models to predict mean relative humidity and temperature with the most suitable inputs. To find the most appropriate data type for these meteorological parameters both hourly-daily and raw-normalized data sets were used, and results were compared. The models were trained with 2014-2017 data observed at Kirkuk city station in Iraq, were checked with both 2018 data of Kirkuk and Sanliurfa city station in Turkey to investigate whether a model set with the data of a country could be used for another country data set. The execution of models was evaluated by using root mean square error (RMSE), mean absolute error (MAE), and determination coefficient R2. Among the two parameters, the temperature achieved the best performance using relative humidity and dew point as input variables. According to the results, daily normalized data had lower error values and higher R2 than hourly un-normalized data. Additionally, the results showed that the model performed successfully at the Sanliurfa city station on the temperature parameter because of similar climate conditions to Kirkuk city. en_US
dc.identifier.endpage 33 en_US
dc.identifier.issn 2687-6167
dc.identifier.issue 46 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 14 en_US
dc.identifier.trdizinid 534854
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/534854/the-effect-of-the-data-type-on-anfis-results-case-study-temperature-and-relative-humidity
dc.identifier.uri https://hdl.handle.net/20.500.14720/9359
dc.identifier.volume 0 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.relation.ispartof Journal of scientific reports-A (Online) en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Fizik en_US
dc.subject Uygulamalı en_US
dc.title The Effect of The Data Type on Anfis Results, Case Study Temperature and Relative Humidity en_US
dc.type Article en_US

Files