YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Optimum Design of 3d Steel Frames With Composite Slabs Using Adaptive Harmony Search Method

No Thumbnail Available

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

CRC Press

Abstract

This chapter presents optimum design of steel buildings with composite slabs subjected to combined loading conditions which includes dead, live, snow and earthquake loads. The buildings may have regular or irregular plans. In the formulation of the design optimization problem minimizing the weight of the building is taken as objective function. The design constraints are implemented according to LRFD-AISC. Design variables are selected as designation of W-sections to be assigned to frame member groups, slab thickness, stud diameter, stud height, deck type and designations of W-sections for intermediate steel beams in the composite slabs. The design optimization problem with such formulation turns out to be discrete nonlinear programming problem. Three soft computing techniques are employed to determine its optimum solution. These are Adaptive Harmony Search (AHS) algorithm, Biogeography optimization with levy Flight (LFBBO) and Whale Optimization (WO) algorithm. The performance of three optimum design algorithms developed is investigated on two three-dimensional six-story steel frames with and without composite slabs. © 2023 Taylor & Francis Group, LLC.

Description

Keywords

Turkish CoHE Thesis Center URL

WoS Q

N/A

Scopus Q

N/A

Source

Soft Computing: Recent Advances and Applications in Engineering and Mathematical Sciences

Volume

Issue

Start Page

179

End Page

210