The Effect of Fiber Type on Energy Absorption Capacities of Crash Boxes Made of Composite Material
Abstract
Günümüzde kara yolu ulaşımına rağbet hızla artmaktadır. Bu rağbet sonucu araç sayısındaki artış beraberinde trafik kazalarındaki artışa sebep olmaktadır. Otomotiv endüstrisinde gelişime açık olan, aktif ve pasif olmak üzere iki farklı güvenlik sistemi yer almaktadır. Aktif güvenlik sistemleri olası bir trafik kazasını önlemek, pasif güvenlik sistemleri ise oluşan kaza sonrasında sürücü ya da yolcuların minimum şekilde etkilenmesini sağlamak için yer almaktadır. Aktif güvenlik sistemleri; kilitleme önleyici (ABS), anti patinaj sistemi (ASR), elektronik denge programı (ESP). Pasif güvenlik sistemleri ise; çarpışma kutuları (crash box), emniyet kemeri ve hava yastığıdır. Çarpışma kutuları aracın ön kısmında yer alan şasi demirine bağlıdır. Olası bir çarpışma anında oluşan darbe enerjisini emerek sürücü ya da yolcuların bu darbeden minimum seviyede etkilenmesini sağlamaktadır. Çarpışma kutuları genellikle metal veya alüminyum malzemeden yapılmaktadır. Son zamanların en çok kullanılan malzeme yapılarından kompozit malzemeler birçok mekanik özelliğiyle metal ve alüminyum malzemelerden daha avantajlı, daha mukavim ve daha uzun ömürlü olduğundan tercih alanları artmaktadır. Kompozit malzemeler çarpışma kutularında kullanılıp yüksek enerji absorbsiyonu sağlanarak yolcu ve sürücü güvenliği arttırılır. Bu çalışmada ekolojik dengeyi bozan CO2 emisyonunu azaltmak ve yakıt tasarrufuna katkı sağlamak için araçlarda kullanılan çarpışma kutularının malzeme tipleri ve geometrileri değiştirilerek ağırlıklarını azaltıp mukavim bir hale getirerek kullanıma sunmak istenilmiştir. Vakum infüzyon yöntemi kullanılarak Karbon fiber, Cam fiber ve Aramid fiber malzemelerden oluşturulmuş 3 adet kare, 3 adet dairesel ve 3 adet altıgen toplamda 9 adet numuneden oluşan sistemde eşit şartlarda olacak şekilde 2 mm/dk hızla 50 mm uzunluğunda basma testlerine tabii tutulmuştur. Çalışma sonucunda sönümlenen toplam enerji, maksimum deformasyon kuvveti, ortalama deformasyon kuvveti, ezilme kuvveti verimi ve özgül enerji emilim sayısal verileri elde edilmiştir. Bu verilere bakıldığında karbon fiber takviyeli altıgen geometriye sahip numunenin sönümlenen toplam enerji değeri 246.171 joule ve özgül enerji sönümleme değeri 8577.3 j/kg olarak bulunmuştur. Numuneler arasında en yüksek enerji emilim performansı gösteren numune karbon fiber takviyeli altıgen numunedir.
Nowadays, the demand for road transportation is increasing rapidly. As a result of this demand, the increase in the number of vehicles leads to an increase in traffic accidents. There are two different security systems, active and passive, which are open to development in the automotive industry. Active safety systems are in place to prevent a possible traffic accident, while passive safety systems are in place to ensure that the driver or passengers are minimally affected after the accident. Active safety systems; anti-lock (ABS), anti-skid system (ASR), electronic stability program (ESP). Passive safety systems are crash boxes, seat belts and airbags. The collision boxes are connected to the chassis iron located in the front part of the vehicle. By absorbing the impact energy generated at the time of a possible collision. It ensures that the driver or passengers are minimally affected by this impact. Collision boxes are usually made of metal or aluminum material. Composite materials, one of the most widely used material structures of recent times, are more advantageous, more durable and longer lasting than metal and aluminum materials with many mechanical properties, so the areas of preference are increasing. Composite materials are used in collision boxes and passenger and driver safety is increased by providing high energy absorption. In this study, it was aimed to reduce the CO2 emissions that disrupt the ecological balance and to contribute to fuel economy by changing the material structures and geometries of the collision boxes used in vehicles, reducing their weight and making them durable and available for use. 3 square, 3 circular and 3 hexagonal formed from Carbon Fiber, Glass Fiber and Aramid Fiber materials using the vacuum infusion method were subjected to 50 mm long printing tests at a speed of 2 mm/min to be under equal conditions in a system consisting of 9 samples in total. As a result of the study, numerical data of the total damped energy, maximum deformation force, average deformation force, crushing force efficiency and specific enerji absorption were obtained. When these data are examined, the total damped energy value of the carbon fiber reinforced hexagon geometry sample was found to be 246.171 joules and the specific energy damping value was found to be 8577.3 j/kg. The decanter with the highest energy absorption performance among the samples is the carbon fiber reinforced hexagon sample.
Nowadays, the demand for road transportation is increasing rapidly. As a result of this demand, the increase in the number of vehicles leads to an increase in traffic accidents. There are two different security systems, active and passive, which are open to development in the automotive industry. Active safety systems are in place to prevent a possible traffic accident, while passive safety systems are in place to ensure that the driver or passengers are minimally affected after the accident. Active safety systems; anti-lock (ABS), anti-skid system (ASR), electronic stability program (ESP). Passive safety systems are crash boxes, seat belts and airbags. The collision boxes are connected to the chassis iron located in the front part of the vehicle. By absorbing the impact energy generated at the time of a possible collision. It ensures that the driver or passengers are minimally affected by this impact. Collision boxes are usually made of metal or aluminum material. Composite materials, one of the most widely used material structures of recent times, are more advantageous, more durable and longer lasting than metal and aluminum materials with many mechanical properties, so the areas of preference are increasing. Composite materials are used in collision boxes and passenger and driver safety is increased by providing high energy absorption. In this study, it was aimed to reduce the CO2 emissions that disrupt the ecological balance and to contribute to fuel economy by changing the material structures and geometries of the collision boxes used in vehicles, reducing their weight and making them durable and available for use. 3 square, 3 circular and 3 hexagonal formed from Carbon Fiber, Glass Fiber and Aramid Fiber materials using the vacuum infusion method were subjected to 50 mm long printing tests at a speed of 2 mm/min to be under equal conditions in a system consisting of 9 samples in total. As a result of the study, numerical data of the total damped energy, maximum deformation force, average deformation force, crushing force efficiency and specific enerji absorption were obtained. When these data are examined, the total damped energy value of the carbon fiber reinforced hexagon geometry sample was found to be 246.171 joules and the specific energy damping value was found to be 8577.3 j/kg. The decanter with the highest energy absorption performance among the samples is the carbon fiber reinforced hexagon sample.
Description
Keywords
Makine Mühendisliği, Mechanical Engineering
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
111