YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Covid-19 Diagnosis From Blood Gas Using Multivariate Linear Regression

dc.contributor.author Ayata, Faruk
dc.contributor.author Seyyarer, Ebubekir
dc.date.accessioned 2025-05-10T17:57:37Z
dc.date.available 2025-05-10T17:57:37Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Van Yüzüncü Yil Üni̇versi̇tesi̇,Van Yüzüncü Yil Üni̇versi̇tesi̇ en_US
dc.description.abstract With the impact of the COVID-19 outbreak, almost all scientists and nations began to show great interest in the subject for a long time. Studies in the field of outbreak, diagnosis and prevention are still ongoing. Issues such as methods developed to understand the spread mechanisms of the disease, prevention measures, vaccine and drug research are among the top priorities of the world agenda. The accuracy of the tests applied in the outbreak management has become extremely critical. In this study, it is aimed to obtain a function that finds the positive or negative COVID-19 test from the blood gas values of in- dividuals by using Machine Learning methods to contribute to the outbreak management. Using the Multivariate Linear Regression (MLR) model, a linear function is obtained to represent the COVID-19 dataset taken from the Van province of Turkey. The data set ob- tained from Van Yüzüncü Yıl University Dursun Odabaş Medical Center consists of blood gas analysis samples (109 positive, 1146 negative) taken from individuals. It is thought that the linear function to be obtained by using these data will be an important method in de- termining the test results of individuals. Gradient Descent optimization methods are used to find the optimum values of the coefficients in the function to be obtained. In the study, the RMSProp optimization algorithm has a success rate of 58-91.23% in all measurement methods, and it is seen that it is much more successful than other optimization algorithms. en_US
dc.identifier.doi 10.17350/HJSE19030000327
dc.identifier.endpage 23 en_US
dc.identifier.issn 2149-2123
dc.identifier.issn 2148-4171
dc.identifier.issue 1 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 15 en_US
dc.identifier.trdizinid 1239643
dc.identifier.uri https://doi.org/10.17350/HJSE19030000327
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1239643/covid-19-diagnosis-from-blood-gas-using-multivariate-linear-regression
dc.identifier.uri https://hdl.handle.net/20.500.14720/20079
dc.identifier.volume 11 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.relation.ispartof Hittite Journal of Science and Engineering en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Tıbbi İnformatik en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yazılım Mühendisliği en_US
dc.subject Mikrobiyoloji en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Sibernitik en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Bilgi Sistemleri en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Donanım Ve Mimari en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Teori Ve Metotlar en_US
dc.subject Bilgisayar Bilimleri en_US
dc.subject Yapay Zeka en_US
dc.title Covid-19 Diagnosis From Blood Gas Using Multivariate Linear Regression en_US
dc.type Article en_US

Files