YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Inverted Distance and Inverted Wiener Index

No Thumbnail Available

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Pushpa Publishing House

Abstract

The Wiener index is the sum of distances between all pairs of vertices of a (connected) graph. In this paper, we define two novel graph invariants: the inverted distance and the inverted Wiener index. The inverted distance between any two different vertices u and v of a simple connected graph G is defined as: i(u, v) = D - d(u, v) + 1, where D denotes the diameter of G and d(u, v) denotes the distance of the vertices u and v. The inverted Wiener index of a simple connected graph G is defined as: IW(G) = Sigma(u not equal v) i(u, v), where the sum is taken over unordered pairs of vertices of G. We characterized maximum trees with respect to the inverted Wiener index.

Description

Ediz, Suleyman/0000-0003-0625-3634; Cancan, Murat/0000-0002-8606-2274

Keywords

Inverted Distance, Inverted Wiener Index, Wiener Index, Average Inverted Distance

Turkish CoHE Thesis Center URL

WoS Q

N/A

Scopus Q

N/A

Source

Volume

17

Issue

1

Start Page

11

End Page

19