YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

On the Fixed Point Theorem for Large Contraction Mappings With Applications To Delay Fractional Differential Equations

dc.authorscopusid 56242035900
dc.authorscopusid 59157836600
dc.authorscopusid 36154690100
dc.authorscopusid 56638410400
dc.authorscopusid 8721755000
dc.contributor.author Mesmouli, M.B.
dc.contributor.author Akın, E.
dc.contributor.author Iambor, L.F.
dc.contributor.author Tunç, O.
dc.contributor.author Hassan, T.S.
dc.date.accessioned 2025-05-10T16:55:06Z
dc.date.available 2025-05-10T16:55:06Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Mesmouli M.B., Department of Mathematics, College of Science, University of Ha’il, Ha’il, 2440, Saudi Arabia; Akın E., Department of Mathematics and Statistics, Missouri University of Science and Technology, Rolla, 65401, MO, United States; Iambor L.F., Department of Mathematics and Computer Science, University of Oradea, Oradea, 410087, Romania; Tunç O., Department of Computer Programing, Baskale Vocational School, Van Yuzuncu Yil University Campus, Van, 65080, Turkey; Hassan T.S., Department of Mathematics, College of Science, University of Ha’il, Ha’il, 2440, Saudi Arabia, Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt, Jadara University Research Center, Jadara University, Irbid, 21110, Jordan en_US
dc.description.abstract This paper explores a new class of mappings and presents several fixed-point results for these mappings. We define these mappings by combining well-known mappings in the literature, specifically the large contraction mapping and Chatterjea’s mapping. This combination allows us to achieve significant fixed-point results in complete metric spaces, both in a continuous and a non-continuous sense. Additionally, we provide an explicit example to validate our findings. Furthermore, we discuss a general model for fractional differential equations using the Caputo derivative. Finally, we outline the benefits of our study and suggest potential areas for future research. © 2024 by the authors. en_US
dc.description.sponsorship University of Oradea en_US
dc.identifier.doi 10.3390/fractalfract8120703
dc.identifier.issn 2504-3110
dc.identifier.issue 12 en_US
dc.identifier.scopus 2-s2.0-85213443244
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.3390/fractalfract8120703
dc.identifier.uri https://hdl.handle.net/20.500.14720/3377
dc.identifier.volume 8 en_US
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Multidisciplinary Digital Publishing Institute (MDPI) en_US
dc.relation.ispartof Fractal and Fractional en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Caputo Operator en_US
dc.subject Chatterjea’S Map en_US
dc.subject Complete Metric Space en_US
dc.subject Fixed Point en_US
dc.subject Large Contraction en_US
dc.title On the Fixed Point Theorem for Large Contraction Mappings With Applications To Delay Fractional Differential Equations en_US
dc.type Article en_US

Files