Results on Super Edge Magic Deficiency of Some Well-Known Classes of Finite Graphs
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Catolica del Norte
Abstract
A graph Ω(Λ, Γ) is considered super edge magic if there exists a bijective function φ: Λ(Ω)∪Γ(Ω) −→ {1, 2, 3,…, |Λ(Ω)|+|Γ(Ω)|} such that φ(τ1)+φ(τ1τ2)+φ(τ2) is a constant for every edge τ1τ2 ∈ Γ(Ω), and φ(Λ(Ω)) = {1, 2, 3,…, |Λ(Ω)|}. Furthermore, the super edge magic deficiency of a graph Ω, denoted as μs(Ω), is either the minimum non-negative integer η such that Ω ∪ ηK1 is a super edge magic graph or +∞ if such an integer η does not exist. In this paper, we investigate the super edge magic deficiency of certain families of graphs. © (2024), (SciELO-Scientific Electronic Library Online). All Rights Reserved.
Description
Keywords
Degree Splitting Graph, Jellyfish Graph, Jewel Graph, Quadrilateral Snake Graph, Shadow Graph, Splitting Graph, Super Edge Magic Deficiency, Super Edge Magic Graph
Turkish CoHE Thesis Center URL
WoS Q
N/A
Scopus Q
Q3
Source
Proyecciones
Volume
43
Issue
5
Start Page
1075
End Page
1096