Multi-Walled Carbon Nanotube Supported Rhodium Nanoparticles as a Catalyst in the Production of Hydrogen From the Hydrolysis of Dimethylamine-Borane and Investigation of Reaction Kinetics
No Thumbnail Available
Date
2020
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Bu yüksek lisans çalışmasında, önemli bir amin-boran türevi olarak değerlendirilen dimetilamin-borandan (DMAB) hidroliz tepkimesi yoluyla hidrojen üreten yeni bir katalitik malzeme hazırlanmış ve karakterize edilmiştir. Bu amaçla, çok duvarlı karbon nanotüp (MWCNT) destekli Rh (0) nanokümeleri tepkime dışı (ex-situ) hazırlanarak DMAB'dan hidroliz tepkimesi yoluyla hidrojen üretimindeki katalitik performansı araştırılmıştır. Hazırlanmış olan MWCNT destekli Rh (0) nanokümeleri, indüktif eşlenmiş plazma optik emisyon spektroskopisi (ICP-OES), toz X-ışınları kırınımı (P-XRD), X-ışınları fotoelektron spektroskopisi (XPS), geçirimli elektron mikroskobu (TEM), geçirimli elektron mikroskobu enerji dağılımlı X-ışınları spektroskopisi (TEM/EDX), yüksek çözünürlüklü geçirimli elektron mikroskobu (HRTEM) ve 11B-NMR gibi ileri analitik ve spektroskopik yöntemler kullanılarak tanımlanmıştır. Hazırlanan Rh (0) nanokümelerinin DMAB'dan hidroliz tepkimesi yoluyla hidrojen üretiminde tekrar kullanılabilirlik performansları da incelendikten sonra farklı sıcaklıklarda katalitik tepkimeler gerçekleştirilerek katalitik tepkime için aktivasyon parametreleri (Ea: Aktivasyon Enerjisi; ΔH#: Aktivasyon Entalpisi; ΔS#: Aktivasyon Entropisi) hesaplanmıştır.
In this master thesis, a new catalytic material was prepared and characterized that produced hydrogen from the hydrolysis of dimethylamine-boran (DMAB), which is considered an important amine-borane derivative. For this purpose, multi-walled carbon nanotube (MWCNT) supported Rh (0) nanoclusters were prepared ex-situ and their catalytic performance in hydrogen production by hydrolysis reaction from DMAB was investigated. Prepared MWCNT supported Rh (0) nanoclusters were charcaterized by using advanced analytical and spectroscopic methods such as inductively coupled plasma optical emission spectroscopy (ICP-OES), powder X-ray diffraction (P-XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), transmission electron microscopy-energy dispersed X-ray spectroscopy (TEM/EDX), high resolution transmission electron microscopy (HRTEM) and 11B-NMR. After analyzing the reusability performances of the prepared Rh (0) nanoclusters by hydrolysis from DMAB, the activation parameters (Ea: Activation Energy; ΔH#: Activation Enthalpy; ΔS#: Activation Entropy) were calculated by performing catalytic reactions at different temperatures.
In this master thesis, a new catalytic material was prepared and characterized that produced hydrogen from the hydrolysis of dimethylamine-boran (DMAB), which is considered an important amine-borane derivative. For this purpose, multi-walled carbon nanotube (MWCNT) supported Rh (0) nanoclusters were prepared ex-situ and their catalytic performance in hydrogen production by hydrolysis reaction from DMAB was investigated. Prepared MWCNT supported Rh (0) nanoclusters were charcaterized by using advanced analytical and spectroscopic methods such as inductively coupled plasma optical emission spectroscopy (ICP-OES), powder X-ray diffraction (P-XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), transmission electron microscopy-energy dispersed X-ray spectroscopy (TEM/EDX), high resolution transmission electron microscopy (HRTEM) and 11B-NMR. After analyzing the reusability performances of the prepared Rh (0) nanoclusters by hydrolysis from DMAB, the activation parameters (Ea: Activation Energy; ΔH#: Activation Enthalpy; ΔS#: Activation Entropy) were calculated by performing catalytic reactions at different temperatures.
Description
Keywords
Kimya, Hidrojen, Hidrojen depolanması, Hidrojen enerjisi, Hidrojen üretimi, Chemistry, Hydrogen, Hydrogen storage, Hydrogen energy, Hydrogen production
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
102