YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Emotion Analysis From Facial Expressions Using Convolutional Neural Networks

dc.authorscopusid 57188924981
dc.authorscopusid 57226391491
dc.authorscopusid 57226399924
dc.authorscopusid 6508068175
dc.contributor.author Coşkun Irmak, M.
dc.contributor.author Bilge Han Taş, M.
dc.contributor.author Turan, S.
dc.contributor.author Haşıloğlu, A.
dc.date.accessioned 2025-05-10T16:53:53Z
dc.date.available 2025-05-10T16:53:53Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Coşkun Irmak M., Van Yüzüncü Yıl University, Van, Turkey; Bilge Han Taş M., Erzincan Binali Yıldırım University, Erzincan, Turkey; Turan S., Erzincan Binali Yıldırım University, Erzincan, Turkey; Haşıloğlu A., Atatürk University, Erzurum, Turkey en_US
dc.description.abstract In order to better understand human behavior, the emotional content of human facial expressions needs to be accurately analyzed and interpreted. While the perception of faces and facial expressions is a natural skill for humans, it still poses great challenges for computer systems. These difficulties result from the non-uniformity of the human face and differences in conditions such as lighting, shadows, face pose and orientation. Deep learning models, especially Convolutional Neural Networks (CNNs), have great potential to deal with these challenges due to their powerful automatic feature extraction and computational efficiency. In this study, a CNN model is proposed to classify seven different emotions (angry, disgust, fear, happy, sadness, surprise and neutral) using the FER-2013 dataset. With the proposed model, 70.62% accuracy on the training data and 70% on the test data has been achieved. The loss value was found to be 0.80 at the training stage and 0.86 at the testing stage. © 2021 IEEE en_US
dc.identifier.doi 10.1109/UBMK52708.2021.9558917
dc.identifier.endpage 574 en_US
dc.identifier.isbn 9781665429085
dc.identifier.scopus 2-s2.0-85125839836
dc.identifier.scopusquality N/A
dc.identifier.startpage 570 en_US
dc.identifier.uri https://doi.org/10.1109/UBMK52708.2021.9558917
dc.identifier.uri https://hdl.handle.net/20.500.14720/2933
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof Proceedings - 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 6th International Conference on Computer Science and Engineering, UBMK 2021 -- 15 September 2021 through 17 September 2021 -- Ankara -- 176826 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Convolutional Neural Networks en_US
dc.subject Deep Learning en_US
dc.subject Facial Expression Recognition en_US
dc.subject Fer-2013 en_US
dc.title Emotion Analysis From Facial Expressions Using Convolutional Neural Networks en_US
dc.type Conference Object en_US

Files