YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

An Artificial Neural Network (Ann) Solution To the Prediction of Age-Hardening and Corrosion Behavior of an Al/Tic Functional Gradient Material (Fgm)

dc.authorid Dikici, Burak/0000-0002-7249-923X
dc.authorwosid Dikici, Burak/A-2054-2009
dc.contributor.author Dikici, Burak
dc.contributor.author Tuntas, Remzi
dc.date.accessioned 2025-05-10T17:09:30Z
dc.date.available 2025-05-10T17:09:30Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Dikici, Burak] Ataturk Univ, Dept Met & Mat Engn, TR-25240 Erzurum, Turkey; [Tuntas, Remzi] Yuzuncu Yil Univ, Fac Business, Dept Business Adm, Tusba, Turkey en_US
dc.description Dikici, Burak/0000-0002-7249-923X en_US
dc.description.abstract In this theoretical study, the prediction of the corrosion resistance and age-hardening behavior of an Al/TiC functional gradient material (FGM) has been investigated by using the artificial neural network (ANN). The input parameters have been selected as TiC volume fraction of the composite layers, aging periods of the composite, environmental conditions, and applied potential during the corrosion tests. Current and microhardness were used as the one output in the proposed network. Also, a new three-layered composite has been imaginarily designed to demonstrate the predictive capability and flexibilities of the ANN model as a case study. Artificially aging (T6) process and potentiodynamic scanning (PDS) tests were used for heat-treating and corrosion response of the FGS, respectively. The results showed that the generated PDS curves of the FGM and calculated corrosion parameters of the case study are quite near and in acceptable limits for similar composites obtained values in experimental studies. Besides, this study has been a great success in predicting peak-aging times and its corresponding hardness values more precisely. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1177/0021998320948945
dc.identifier.endpage 317 en_US
dc.identifier.issn 0021-9983
dc.identifier.issn 1530-793X
dc.identifier.issue 2 en_US
dc.identifier.scopusquality Q2
dc.identifier.startpage 303 en_US
dc.identifier.uri https://doi.org/10.1177/0021998320948945
dc.identifier.uri https://hdl.handle.net/20.500.14720/7157
dc.identifier.volume 55 en_US
dc.identifier.wos WOS:000560511900001
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Neural Network (Ann) en_US
dc.subject Functional Gradient Material (Fgm) en_US
dc.subject Metal Matrix Composite (Mmc) en_US
dc.subject Age-Hardening en_US
dc.subject Corrosion en_US
dc.subject Modelling en_US
dc.title An Artificial Neural Network (Ann) Solution To the Prediction of Age-Hardening and Corrosion Behavior of an Al/Tic Functional Gradient Material (Fgm) en_US
dc.type Article en_US

Files