YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Automating Thematic Analysis With Multi-Agent LLM Systems

dc.authorscopusid 57200651663
dc.authorscopusid 57224723719
dc.authorscopusid 57889613800
dc.authorscopusid 57210696892
dc.authorscopusid 58408248400
dc.authorscopusid 56275235700
dc.authorscopusid 59243988400
dc.contributor.author Sankaranarayanan, S.
dc.contributor.author Borchers, C.
dc.contributor.author Simon, S.
dc.contributor.author Tajik, E.
dc.contributor.author Atas, A.H.
dc.contributor.author Celik, B.
dc.contributor.author Shahrokhian, B.
dc.date.accessioned 2025-07-30T16:34:40Z
dc.date.available 2025-07-30T16:34:40Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Sankaranarayanan S.] Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, 15213, PA, United States; [Borchers C.] Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, 15213, PA, United States; [Simon S.] Copenhagen University, Nørregade 10, København, 1172, Denmark; [Tajik E.] Florida State University, 222 S Copeland St, Tallahassee, 32306, FL, United States; [Atas A.H.] Galatasaray University, Ortaköy, Çırağan Cd. No:36, Beşiktaş, İstanbul, 34349, Turkey; [Celik B.] Van Yuzuncu Yil University, Bardakçı, Yüzüncü Yıl Üniversitesi Kampüsü, Tuşba, Van, 65090, Turkey; [Balzan F.] University of Bologna, Via Zamboni, 33, BO, Bologna, 40126, Italy; [Shahrokhian B.] Arizona State University, 1151 S Forest Ave, Tempe, 85281, AZ, United States en_US
dc.description.abstract Thematic analysis (TA) is a method used to identify, examine, and present themes within data. TA is often a manual, multistep, and time-intensive process requiring collaboration among multiple researchers. TA’s iterative subtasks, including coding data, identifying themes, and resolving inter-coder disagreements, are especially laborious for large data sets. Given recent advances in natural language processing, Large Language Models (LLMs) offer the potential for automation at scale. Recent literature has explored the automation of isolated steps of the TA process, tightly coupled with researcher involvement at each step. Research using such hybrid approaches has reported issues in LLM generations, such as hallucination, inconsistent output, and technical limitations (e.g., token limits). This paper proposes a multi-agent system, differing from previous systems using an orchestrator LLM agent that spins off multiple LLM sub-agents for each step of the TA process, mirroring all the steps previously done manually. In addition to more accurate analysis results, this iterative coding process based on agents is also expected to result in increased transparency of the process, as analytical stages are documented step-by-step. We study the extent to which such a system can perform a full TA without human supervision. Preliminary results indicate human-quality codes and themes based on alignment with human-derived codes. Nevertheless, we still observe differences in coding complexity and thematic depth. Despite these differences, the system provides critical insights on the path to TA automation while maintaining consistency, efficiency, and transparency in future qualitative data analysis, which our open-source datasets, coding results, and analysis enable. © 2025 for this paper by its authors. en_US
dc.identifier.endpage 238 en_US
dc.identifier.issn 1613-0073
dc.identifier.scopus 2-s2.0-105011032981
dc.identifier.scopusquality Q4
dc.identifier.startpage 229 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14720/28187
dc.identifier.volume 3995 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher CEUR-WS en_US
dc.relation.ispartof CEUR Workshop Proceedings -- Joint of LAK 2025 Workshops, LAK-WS 2025 -- 3 March 2025 through 4 March 2025 -- Dublin -- 210311 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Large Language Models en_US
dc.subject LLMs en_US
dc.subject Multi-Agent Systems en_US
dc.subject Qualitative Analysis en_US
dc.subject Qualitative Coding en_US
dc.subject Thematic Analysis en_US
dc.title Automating Thematic Analysis With Multi-Agent LLM Systems en_US
dc.type Conference Object en_US

Files