An Exponentially Fitted Difference Scheme for First Order Singulary Perturbed Delay Differential Equations
No Thumbnail Available
Date
2009
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Bu çalışmada, singüler pertürbe özellikli birinci mertebe lineer gecikmeli diferansiyel denklemler için üstel katsayılı fark şemaları incelenmiştir. Singüler pertürbe özellikli gecikmeli diferansiyel denkleme öncelikle nümerik adımlar metodu uygulanarak her bir alt aralıkta singüler pertürbe özellikli adi diferansiyel denkleme dönüştürüldü. Daha sonra, problem için baz fonksiyonları kullanılarak kalan terimleri integral şeklinde olan üstel katsayılı fark şeması kuruldu ve fark şemasının pertürbasyon parametresine göre düzgün yakınsaklığı incelendi.Alınan teorik sonuçlar Matematica programlama dilinde bir örnek üzerinde denetlenmiştir.
In this study, it is investigated an exponentially fitted difference scheme for linear first-order singularly perturbed delay differential equations. Applying the method of numerical steps, singularly perturbed delay differential equations are converted to singularly perturbed ordinary differential equations on each subinterval. Then for the problem, an exponentially fitted difference scheme is contructed use of exponentially basis functions which remainder term in integral form and it is shown that the difference scheme is uniformly convergent with respect to perturbation parameter.The theoretical results have are presented on a numerical example of the programming Matematica.
In this study, it is investigated an exponentially fitted difference scheme for linear first-order singularly perturbed delay differential equations. Applying the method of numerical steps, singularly perturbed delay differential equations are converted to singularly perturbed ordinary differential equations on each subinterval. Then for the problem, an exponentially fitted difference scheme is contructed use of exponentially basis functions which remainder term in integral form and it is shown that the difference scheme is uniformly convergent with respect to perturbation parameter.The theoretical results have are presented on a numerical example of the programming Matematica.
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
42