YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Application of Regression Models in Bird Population Data: an Example of Haçlı Lake

dc.contributor.author Çelik, Emrah
dc.contributor.author Durmus, Atilla
dc.date.accessioned 2025-05-10T17:52:44Z
dc.date.available 2025-05-10T17:52:44Z
dc.date.issued 2020
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Iğdir Üni̇versi̇tesi̇,Van Yüzüncü Yil Üni̇versi̇tesi̇ en_US
dc.description.abstract In this study, the effects of habitat, ordo, UTM frame, seasons and number of species on bird populations and distribution in Haçlı Lake were investigated. Bird population data were obtained using point counts and transect observation methods. Poisson regression is typically used in such data sets. The basic principle of Poisson regression assumes that the variance is equal to the mean. Failure to achieve this equality causes incorrect parameter estimates and standard errors. In practice, the variance is often higher than the mean (variance > mean). This is called over-dispersion, where the value of over- dispersion is greater than 1.0. The population status of the data set used in the study was over-dispersed. Negative binomial regression is the most common method used to eliminate the over-dispersion effect. In this case, the preferred method is the negative binomial regression method. The over-dispersion value in the Poisson regression was considerably greater than 1.0 (54.937) while the over-dispersion value was very close to 1.0 (1.588) in the negative binomial regression. The results indicated that the use of negative binomial regression method is more appropriate. Therefore, parameter estimations were interpreted according to negative binomial regression method. Herein, climatic factors including temperature and humidity exhibited significant impacts on population density and number of species. en_US
dc.identifier.doi 10.21597/jist.649180
dc.identifier.endpage 798 en_US
dc.identifier.issn 2146-0574
dc.identifier.issn 2536-4618
dc.identifier.issue 2 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 788 en_US
dc.identifier.trdizinid 1142252
dc.identifier.uri https://doi.org/10.21597/jist.649180
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1142252/application-of-regression-models-in-bird-population-data-an-example-of-hacli-lake
dc.identifier.uri https://hdl.handle.net/20.500.14720/18430
dc.identifier.volume 10 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.relation.ispartof Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi en_US
dc.relation.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Balıkçılık en_US
dc.subject Deniz Ve Tatlı Su Biyolojisi en_US
dc.subject Ekoloji en_US
dc.subject İstatistik Ve Olasılık en_US
dc.title Application of Regression Models in Bird Population Data: an Example of Haçlı Lake en_US
dc.type Article en_US

Files