YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Finite and Infinite Dimensional Reproducing Kernel Hilbert Space Approach for Bagley–torvik Equation

dc.authorscopusid 57221124848
dc.authorscopusid 54945074000
dc.authorscopusid 57194593120
dc.authorscopusid 55757060900
dc.contributor.author Ata, A.
dc.contributor.author Sakar, M.G.
dc.contributor.author Saldır, O.
dc.contributor.author Şenol, M.
dc.date.accessioned 2025-05-10T16:56:07Z
dc.date.available 2025-05-10T16:56:07Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Ata A., Hacibektas Vocational School of Technical Sciences, Department of Computer Technologies, Nevsehir Haci Bektas Veli University, Nevsehir, 50300, Turkey; Sakar M.G., Faculty of Sciences, Department of Mathematics, Yuzuncu Yil University, Van, 65080, Turkey; Saldır O., Faculty of Sciences, Department of Mathematics, Yuzuncu Yil University, Van, 65080, Turkey; Şenol M., Faculty of Sciences and Art, Department of Mathematics, Nevsehir Haci Bektas Veli University, Nevsehir, 50300, Turkey en_US
dc.description.abstract In this paper, two different numerical approaches are presented in finite dimensional and infinite dimensional reproducing kernel Hilbert spaces for the fractional order Bagley–Torvik equation with boundary conditions. The reproducing kernel functions are obtained in finite dimensional Hilbert space Πρn[0,A] using Legendre polynomials, while they are obtained by a known classical method in infinite dimensional Sobolev-Hilbert space W23[0,A]. A comprehensive theoretical analysis is given for both approaches, which have different forms of reproducing kernel methods. Numerical results are calculated over wide intervals with both proposed approaches. In order to compare the efficiency of these proposed methods, the numerical results obtained for the considered six examples are presented through tabulated data and graphical representations. © The Author(s), under exclusive licence to Springer Nature India Private Limited 2024. en_US
dc.identifier.doi 10.1007/s40819-024-01828-z
dc.identifier.issn 2349-5103
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85213038177
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1007/s40819-024-01828-z
dc.identifier.uri https://hdl.handle.net/20.500.14720/3567
dc.identifier.volume 11 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof International Journal of Applied and Computational Mathematics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Bagley–Torvik Equation en_US
dc.subject Boundary Value Problem en_US
dc.subject Numerical Approximation en_US
dc.subject Reproducing Kernel Method en_US
dc.subject Shifted Legendre Polynomials en_US
dc.title Finite and Infinite Dimensional Reproducing Kernel Hilbert Space Approach for Bagley–torvik Equation en_US
dc.type Article en_US

Files