YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Approximation of Chaotic Signals Using Quadratic and Cubic Fractal Interpolation Functions

dc.authorscopusid 57782604000
dc.authorscopusid 16307914800
dc.authorscopusid 6603328862
dc.contributor.author Aparna, M.P.
dc.contributor.author Paramanathan, P.
dc.contributor.author Tunç, C.
dc.date.accessioned 2025-07-30T16:33:30Z
dc.date.available 2025-07-30T16:33:30Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Aparna M.P.] Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India; [Paramanathan P.] Department of Mathematics, Amrita School of Physical Sciences, Amrita Vishwa Vidyapeetham, Coimbatore, India; [Tunç C.] Department of Mathematics, Faculty of Sciences, Van Yuzuncu Yil University, Campus, Van, 65080, Turkey en_US
dc.description Science and Engineering Research Board (SERB), Department of Science and Technology (DST), Government of India en_US
dc.description.abstract The fundamental aim of the paper is to propose the construction of quadratic and cubic fractal interpolation functions with nonzero vertical scaling factors, using the concept of Banach contraction. The constructed quadratic and cubic fractal interpolation functions have been implemented to approximate and integrate the one-dimensional discrete data points. As the first step towards the approximation and the derivation of the integration formula, the given discrete set of data has been assigned with quadratic and cubic iterated function systems, which are then used in defining the respective Hutchinson operators. The given data set is graphically approximated with the unique fixed point of these newly formulated operators via the Banach contraction principle. The paper then focuses on the derivation of the method of numerical integration for the data set using the constructed quadratic and cubic fractal interpolation functions. The numerical integration formula is defined based on the coefficients in the corresponding iterated function systems. Finally, the paper illustrates the performance of the linear, quadratic and cubic iterated function systems in approximating and integrating signals with chaotic behavior. © The Author(s), under exclusive license to Springer Nature Switzerland AG 2025. en_US
dc.identifier.doi 10.1007/978-3-031-58641-5_3
dc.identifier.endpage 53 en_US
dc.identifier.isbn 9783031586408
dc.identifier.issn 0930-8989
dc.identifier.scopus 2-s2.0-105010823316
dc.identifier.scopusquality Q4
dc.identifier.startpage 35 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-031-58641-5_3
dc.identifier.uri https://hdl.handle.net/20.500.14720/28120
dc.identifier.volume 397 SPPHY en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Springer Proceedings in Physics -- International Symposium on Mathematical Analysis of Fractals and Dynamical Systems, ISMAFDS 2023 -- 24 August 2023 through 25 August 2023 -- Vellore -- 335209 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Affine Fractal Interpolation Functions (Affine FIF) en_US
dc.subject Attractor en_US
dc.subject Cubic Iterated Function System (Cubic IFS) en_US
dc.subject Numerical Integration en_US
dc.subject Quadratic Iterated Function System (Quadratic IFS) en_US
dc.title Approximation of Chaotic Signals Using Quadratic and Cubic Fractal Interpolation Functions en_US
dc.type Conference Object en_US

Files