An Action of a Regular Curve on R3 and Matlab Applications
dc.authorwosid | Baydas, Senay/L-8824-2016 | |
dc.contributor.author | Karakas, Bulent | |
dc.contributor.author | Baydas, Senay | |
dc.date.accessioned | 2025-05-10T17:47:47Z | |
dc.date.available | 2025-05-10T17:47:47Z | |
dc.date.issued | 2013 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Karakas, Bulent] Yuzuncu Yil Univ, Fac Econ & Adm Sci Numer Methods, TR-65080 Van, Turkey; [Baydas, Senay] Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkey | en_US |
dc.description.abstract | We define an action set of a regular curve not passing origin using a normed projection. If alpha(t) is a regular curve not passing origin, then the curve beta( t) = alpha( t)/parallel to alpha(t)parallel to is on unit sphere. beta(t) is called normed projection of alpha(t) [ 3]. Every point b(t) subset of beta(t) defines an orthogonal matrix using Cayley's Formula. So we define an action set R-alpha(t) subset of SO(3) of alpha(t). We study in this article some important relations alpha(t) and R-alpha(P), orbit of point P is an element of R-3. At the end we give some applications in Matlab. | en_US |
dc.description.woscitationindex | Emerging Sources Citation Index | |
dc.identifier.endpage | 141 | en_US |
dc.identifier.issn | 0974-875X | |
dc.identifier.issn | 0975-5748 | |
dc.identifier.issue | 3 | en_US |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 133 | en_US |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/16884 | |
dc.identifier.volume | 5 | en_US |
dc.identifier.wos | WOS:000219241700002 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Rgn Publ | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Action Set | en_US |
dc.subject | Normed Projection | en_US |
dc.subject | Regular Curve | en_US |
dc.title | An Action of a Regular Curve on R3 and Matlab Applications | en_US |
dc.type | Article | en_US |