Antimicrobial Nanocoating for Food Industry
No Thumbnail Available
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Abstract
Conventional food preservation and processing methods were widely used for a long time. On the other hand, recently in the food industry and especially in food science area, novel approaches related to food nanotechnology are giving a great deal of attention to providing microbiological safety. In this respect, nanoparticles, nanoemulsions, nanofibers, or nanoencapsulated food-grade materials have been used to delay the rapid total mesophilic, psychrophilic bacteria, some pathogens, as well as total yeast and mold growth in food materials, particularly stored at 4ºC. For this aim, chitosan-based nanostructures, bioactive material(s)-loaded biopolymer-based nanosystems, nanoparticles integrated with nanofibers, nanoencapsulated probiotic bacteria (e.g., Lactobacillus reuteri and Lactobacillus. Rhamnosus), and particularly nanoemulsions obtained from different bioactive materials have been able to be used as nanocoating materials for food or food products. Moreover, nanocoating materials (<1000nm) above aluminum foils have been developed and applied to delay the rapid chemical, physical, sensory deterioration of food materials stored at cold temperatures. Besides antimicrobial usage of nanocoating materials, the coating materials have been treated for obtaining functional food products and providing vitamin (pyridoxine, niacin), fatty acid, and amino acid (valine, methionine) stability. Therefore with less material(s) as compared to the micro and macrosized materials, a larger contact area on the surface of the food materials (e.g., fish fillets, cheese) could be successfully coated. In this respect, all nanostudies reveal that the use of antimicrobial nanocoating materials will have been increased for the next generation of food application in the industry. © 2022 Elsevier Inc. All rights reserved.
Description
Keywords
Antimicrobial Nanocoating, Nanoemulsions, Nanoencapsulation, Nanofibers, Nanoparticles, Nanotechnology, Novel Approaches
Turkish CoHE Thesis Center URL
WoS Q
N/A
Scopus Q
N/A
Source
Handbook of Microbial Nanotechnology
Volume
Issue
Start Page
255
End Page
283