Mathematical Models and Numeric Solition of Solitary Waves Progress
No Thumbnail Available
Date
2006
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Bu çalışma non-lineer dalgalar olarak bilinen soliton dalgalarının nümerikçözümleri üzerine yapıldı. 1884 yılında ilk defa İskoçyalı mühendis John ScottRussel tarafından fark edilen soliton dalgalarının çözümü için sonraları bir çok bilimadamı farklı çözümler ortaya koymuştur.Yapılan çalışmada 1965 yılında Zabusky ve Kruskal tarafından ortayakonulan nümerik çözümler, Korteweg-de Vries (KdV) denklemi için Split StepFourier ve modifiye edilmiş KdV eşitliği için Sonlu Fark Şemaları kullanılarak,bilgisayar ortamında simülasyon yapıldı. Simülasyonda tek dalga ilerleyişi ve ikidalganın etkileşimleri gösterildi. Nümerik çözümler, gerçek çözümlere yakındeğerler bulmak amacı ile uygulanmaktadır. Yapmış olduğumuz ?Soliton dalgasüreçlerinin matematiksel modelleri ve nümerik çözümleri? isimli tez çalışmasıda bu amaca hizmet etme çabasındadır.Yapılan çalışma sonunda soliton dalgaların etkileşimlerinde özelliklerinikaybetmeden bir birleri içinden geçebildikleri ve farklı başlangıç değerlerine bağlıolarak farklı nümerik çözümlerin meydana geldiği fark edildi.
The present study was carried out on solution of non-lineer waves thatknown as solitary waves.Solitary waves was first noticed by Scottish engineer John Scott Russel,However, later many different solution on the solitary waves has been put forwardby other researchers. Present study simulated with using simulation model, for KdVequation Split Step Fourier model and for modified KdV equation, Finite DifferenceScheme were used, that was produced by Zabusky and Kruskal in 1965. One waveadvancing and two waves interaction were demonstrated via simulation. Numericalsolution has been used to find out the approximate value to reel solution. The presentstudy was aimed to help this target.As a result, it has been shown that the interacted solitary waves pass frominside of each other without loosing their identity and different numerical solutionswas produced with different initial conditions.
The present study was carried out on solution of non-lineer waves thatknown as solitary waves.Solitary waves was first noticed by Scottish engineer John Scott Russel,However, later many different solution on the solitary waves has been put forwardby other researchers. Present study simulated with using simulation model, for KdVequation Split Step Fourier model and for modified KdV equation, Finite DifferenceScheme were used, that was produced by Zabusky and Kruskal in 1965. One waveadvancing and two waves interaction were demonstrated via simulation. Numericalsolution has been used to find out the approximate value to reel solution. The presentstudy was aimed to help this target.As a result, it has been shown that the interacted solitary waves pass frominside of each other without loosing their identity and different numerical solutionswas produced with different initial conditions.
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
41