Fractal Sturm-Liouville Problems
dc.authorwosid | Allahverdiev, Bilender/Itv-3966-2023 | |
dc.authorwosid | Tuna, Hüseyi̇n/Aag-6724-2019 | |
dc.authorwosid | Khalili Golmankhaneh, Alireza/L-1554-2013 | |
dc.contributor.author | Allahverdiev, Bilender P. | |
dc.contributor.author | Tuna, Huseyin | |
dc.contributor.author | Golmankhaneh, Alireza Khalili | |
dc.date.accessioned | 2025-06-30T15:24:30Z | |
dc.date.available | 2025-06-30T15:24:30Z | |
dc.date.issued | 2025 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Allahverdiev, Bilender P.] Khazar Univ, Dept Math, Baku, Azerbaijan; [Allahverdiev, Bilender P.; Tuna, Huseyin] UNEC Azerbaijan State Univ Econ, Res Ctr Econophys, Baku, Azerbaijan; [Tuna, Huseyin] Mehmet Akif Ersoy Univ, Dept Math, Burdur, Turkiye; [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Dept Phys, Urmia Branch, Orumiyeh, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, Van, Turkiye | en_US |
dc.description.abstract | In this study, fractal Sturm-Liouville problems are considered. First, minimal and maximal operators corresponding to such problems are defined and a symmetric operator is obtained. Then Green's function is constructed and an eigenfunction expansion theorem is obtained. Finally, some examples are given. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.1080/10652469.2025.2506101 | |
dc.identifier.issn | 1065-2469 | |
dc.identifier.issn | 1476-8291 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.1080/10652469.2025.2506101 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/25169 | |
dc.identifier.wos | WOS:001491782000001 | |
dc.identifier.wosquality | Q2 | |
dc.language.iso | en | en_US |
dc.publisher | Taylor & Francis Ltd | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Fractal Differential Equations | en_US |
dc.subject | Sturm-Liouville Theory | en_US |
dc.subject | Green'S Function | en_US |
dc.subject | Eigenfunction Expansions | en_US |
dc.title | Fractal Sturm-Liouville Problems | en_US |
dc.type | Article | en_US |