Design of a Frequency Selective Surface Filter To Suppress 5g Frequency Band Interference in Biomedical Devices
No Thumbnail Available
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Frekans Seçici Yüzeyler (FSY) belirli frekansları geçirmek ve diğer frekansları bastırmak için kullanılan mikroĢerit yama yapıya sahip bir çeĢit pasif filtrelerdir. Genellikle bant geçiren veya bant durduran tepkilere sahip olmalarından dolayı, yaygın olarak uzaysal filtreler, anten reflektörleri, radomlar, mikrodalga soğurucular, yapay manyetik iletkenler ve elektromanyetik bant-boĢluk malzemeleri olarak kullanılırlar. Elektromanyetik dalgaları manipüle etmedeki performansı nedeniyle, frekans seçiminde, bitiĢik bant giriĢimi bastırmada ve elektromanyetik giriĢim önlemede önemli bir rol oynar. Bu nedenle bunların tasarımındaki hedef belirlenen ve istenmeyen bant aralığını bastırırken istenen frekans değerlerinin iletimini sağlamaktır. Bu çalıĢmada biyomedikal uygulamalarda kullanılan tıbbi cihazların, 5G uygulamalarında kullanılan frekans bantlarından etkilenmemesi amacıyla 3.5 GHz merkez çalıĢma frekansında bant durduran filtre özellikli FSY birim hücresi tasarlanmıĢ ve bu tasarımın saçılma parametreleri üzerinde yapılan simülasyon sonuçları sunulmuĢtur. Tasarım ve simülasyon çalıĢmaları için anten ve mikroĢerit filtre tasarım çalıĢmalarında kullanım ve analiz kolaylığı nedeniyle sıkça kullanılan CST STUDIO tercih edilmiĢtir. Ġlk olarak tasarımda kullanılacak alttaĢ için dielektrik malzeme ve kalınlık seçimi, detaylı bir Ģekilde incelenmiĢtir. Ayrıca yama kısmında parametrik çalıĢmalar yapılarak tasarımın elde edilen son hali LPKF cihazıyla üretilip laboratuvar ortamında ölçümleri gerçekleĢtirilmiĢtir. Simülasyon sonuçlarına yakın değerler elde edilmiĢtir. Sonuç olarak bu çalıĢmada önerilen FSY yapısının 1 mm kalınlığında FR-4 dielektrik malzemesi ile 3.5 GHz merkez frekansında -17 dB geri dönüĢ kaybı elde edilmiĢtir. Bundan dolayı bu çalıĢmada önerilen bu yapının biyomedikal cihazlarda 5G frekans bandı giriĢimini bastırmak amacıyla kullanılabilecek etkili bir soğurucu adayı olduğunu göstermektedir.
Frequency Selective Surfaces (FSS) are a type of passive filters with microstrip patch structures used to transmit specific frequencies while suppressing others. Due to their common characteristics of having band pass or band stop responses, they are widely employed as spatial filters, antenna reflectors, radomes, microwave absorbers, artificial magnetic conductors, and electromagnetic bandgap materials. Due to their performance in manipulating electromagnetic waves, they play a crucial role in frequency selection, suppressing adjacent band interference, and preventing electromagnetic interference. Therefore, the goal in designing them is to ensure the transmission of desired frequency values while suppressing unwanted frequency ranges. In this study, a band stop filter-type FSS unit cell was designed with a center operating frequency of 3.5 GHz to prevent interference from the frequency bands used in 5G applications, aiming to safeguard medical devices used in biomedical applications. The simulation results of the scattering parameters for this design are presented. CST STUDIO was chosen for the design and simulation studies for its ease of use and analysis in antenna and microstrip filter design studies. Firstly, the selection of dielectric material and thickness for the substrate used in the design was thoroughly investigated. Additionally, parametric studies were conducted on the patch section, and the final version of the design was produced using the LPKF device and measurements were performed in a laboratory environment. The obtained values closely matched the simulation results. As a result, -17 dB return loss was obtained at 3.5 GHz center frequency with the 1 mm thick FR-4 dielectric material of the FSY structure proposed in this study. Therefore, this structure proposed in this study shows that it is an effective absorber candidate that can be used to suppress 5G frequency band interference in biomedical devices
Frequency Selective Surfaces (FSS) are a type of passive filters with microstrip patch structures used to transmit specific frequencies while suppressing others. Due to their common characteristics of having band pass or band stop responses, they are widely employed as spatial filters, antenna reflectors, radomes, microwave absorbers, artificial magnetic conductors, and electromagnetic bandgap materials. Due to their performance in manipulating electromagnetic waves, they play a crucial role in frequency selection, suppressing adjacent band interference, and preventing electromagnetic interference. Therefore, the goal in designing them is to ensure the transmission of desired frequency values while suppressing unwanted frequency ranges. In this study, a band stop filter-type FSS unit cell was designed with a center operating frequency of 3.5 GHz to prevent interference from the frequency bands used in 5G applications, aiming to safeguard medical devices used in biomedical applications. The simulation results of the scattering parameters for this design are presented. CST STUDIO was chosen for the design and simulation studies for its ease of use and analysis in antenna and microstrip filter design studies. Firstly, the selection of dielectric material and thickness for the substrate used in the design was thoroughly investigated. Additionally, parametric studies were conducted on the patch section, and the final version of the design was produced using the LPKF device and measurements were performed in a laboratory environment. The obtained values closely matched the simulation results. As a result, -17 dB return loss was obtained at 3.5 GHz center frequency with the 1 mm thick FR-4 dielectric material of the FSY structure proposed in this study. Therefore, this structure proposed in this study shows that it is an effective absorber candidate that can be used to suppress 5G frequency band interference in biomedical devices
Description
Keywords
Elektrik ve Elektronik Mühendisliği, Electrical and Electronics Engineering
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
59