YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Partition Dimension of Generalized Peterson and Harary Graphs

dc.authorscopusid 55658335000
dc.authorscopusid 37081586200
dc.authorscopusid 56030100300
dc.authorscopusid 57190155028
dc.authorscopusid 35185892900
dc.contributor.author Khalaf, A.J.M.
dc.contributor.author Nadeem, M.F.
dc.contributor.author Azeem, M.
dc.contributor.author Farahani, M.R.
dc.contributor.author Cancan, M.
dc.date.accessioned 2025-05-10T16:43:51Z
dc.date.available 2025-05-10T16:43:51Z
dc.date.issued 2021
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Khalaf A.J.M., Department of Mathematics, Faculty of Computer Science and Mathematics University of Kufa, Najaf, Iraq; Nadeem M.F., Department of Mathematics, COMSATS University Islamabad, Lahore Campus, Lahore, 54000, Pakistan; Azeem M., Department of Aerospace Engineering, Faculty of Engineering, Universiti Putra Malaysia, Malaysia; Farahani M.R., Department of Mathematics, Iran University of Science and Technology Narmak, Tehran, Iran; Cancan M., Faculty of Education, Van Yznc Yil University, Van, Turkey en_US
dc.description.abstract The distance of a connected, simple graph (Formula presented) is denoted by d(α1, α2), which is the length of a shortest path between the vertices α1,α2 (Formula presented) V((Formula presented)), where V((Formula presented)) is the vertex set of (Formula presented). The l-ordered partition of V((Formula presented)) is K = {K1, K2,..., Kl}. A vertex α (Formula presented) V((Formula presented)), and r(α|K) = {d(α, K1), d(α, K2),..., d(α, Kl)} be a l-tuple distances, where r(α|K) is the representation of a vertex a with respect to set K. If r(a|K) of a is unique, for every pair of vertices, then K is the resolving partition set of V((Formula presented)). The minimum number l in the resolving partition set K is known as partition dimension (pd(P)). In this paper, we studied the generalized families of Peterson graph, Pλx and proved that these families have bounded partition dimension. © 2021. All Rights Reserved. en_US
dc.identifier.endpage 94 en_US
dc.identifier.issn 1817-3462
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-85114340293
dc.identifier.scopusquality Q2
dc.identifier.startpage 84 en_US
dc.identifier.uri https://hdl.handle.net/20.500.14720/310
dc.identifier.volume 17 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Abdus Salam School of mathematical Sciences en_US
dc.relation.ispartof Journal of Prime Research in Mathematics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Generalized Peterson Graph en_US
dc.subject Harary Graph en_US
dc.subject Partition Dimension en_US
dc.subject Partition Resolving Set en_US
dc.subject Sharp Bounds Of Partition Dimension en_US
dc.title Partition Dimension of Generalized Peterson and Harary Graphs en_US
dc.type Article en_US

Files