A Second Order Numerical Method for Singularly Perturbed Volterra Integro-Differential Equations With Delay
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Sciendo
Abstract
This study deals with singularly perturbed Volterra integro-differential equations with delay. Based on the properties of the exact solution, a hybrid difference scheme with appropriate quadrature rules on a Shishkin-Type mesh is constructed. By using the truncation error estimate techniques and a discrete analogue of Grönwall's inequality it is proved that the hybrid finite difference scheme is almost second order accurate in the discrete maximum norm. Numerical experiments support these theoretical results and indicate that the estimates are sharp. © 2024 Fevzi Erdoǧan et al., published by Sciendo.
Description
Keywords
Delay Differential Equation, Finite Difference Scheme, Integro-Differential Equation, Shishkin Mesh, Singular Perturbation
Turkish CoHE Thesis Center URL
WoS Q
N/A
Scopus Q
N/A
Source
International Journal of Mathematics and Computer in Engineering
Volume
2
Issue
1
Start Page
85
End Page
96