Enhancing Network Security: A Comprehensive Analysis of Intrusion Detection Systems
No Thumbnail Available
Date
2024
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Abstract
Siber saldırılarının artan karmaşıklığı ve ilerlemesi göz önüne alındığında, etkili saldırı tespit sistemlerinin varlığı ağ güvenliğinin önemli bir bileşeni haline gelmiştir. Makine öğrenimi yöntemleri, bu tür saldırıları belirlemek ve azaltmak için potansiyel bir strateji haline gelmiştir. Bu makale, makine öğrenimi tekniklerini kullanarak saldırı tespitinin kapsamlı bir incelemesini gerçekleştirmiştir. Amaç, mevcut araştırma durumunun kapsamlı bir analizini sunmak, engelleri belirlemek ve bu alandaki olası çözümleri vurgulamaktır. Makale, saldırı tespitinin önemini ve geleneksel kural tabanlı sistemlerin kısıtlamalarını inceleyerek başlamaktadır. Ardından, makine öğreniminin temel fikirleri ve kavramları ile saldırı tespiti alanındaki pratik uygulamalarına derinlemesine inmektedir. Bu çalışmada, karar ağaçları, sinir ağları, destek vektör makineleri ve topluluk yöntemleri dahil olmak üzere çeşitli makine öğrenimi algoritmalarının kapsamlı bir incelemesi sunulmaktadır. Bu çalışmanın temel amacı, farklı saldırı türlerini tespit etmek için bu yöntemleri kullanmanın etkinliğini ve kısıtlamalarını incelemektir. NSL-KDD veri setini sınıflandırmak için üç algoritma kullanılmıştır: Basamaklı Geri Yayılımlı Sinir Ağları (CBPNN), Katmanlı Tekrarlayan Sinir Ağı (LRNN) ve İleri-Geri Yayılımlı Sinir Ağları (FBPNN). Yapılan çalışma sonucunda, CBPNN'nin %95 doğruluk elde ederek daha iyi performans gösterdiğini göstermiştir.
Description
Keywords
Turkish CoHE Thesis Center URL
WoS Q
N/A
Scopus Q
N/A
Source
Yüzüncü Yıl Üniversitesi Fen Bilimleri Enstitüsü Dergisi
Volume
29
Issue
3
Start Page
927
End Page
938