Frechet Uzayları ve Holomorfik Fonksiyonlar Üzerine
Abstract
ÖZET Herhangi bir Banach uzayı bir Frechöt uzayıdır. Bu çalışmada reel Banach uzayı üzerinde homojen polinom- ları tanımlayarak bu po.linomların türevlerine ilişkin bazı' sonuçların ispatları verilecekti r. Bu çalışma üç bölümden ibaret olup ilk bölümdo çalışma mız için gerekli olan temel bilgiler verilmiştir. İkinci bö lümde ilk önce ölçüm uzaylarına ilişkin sonuçlar incelenerek P birer Banach uzayı olan L (l
11 SUMMARY Any Banach space is a Frechet space. In this study the homogenous polynomials on the Banach space will be defined, andthe proofs of some results corcerning the derivatives of these polynomials will be given. This study consists of three parts; In the first part, the essential information necessary for our study is given. In the second part, the results concerning measure spaces are examined and L spaces which are Banach spaces are introdu ced. In the third part the Frechet spaces are defined, and the homogenous derivatives of homogenous polynomials described on the mentioned spaces are examined.
11 SUMMARY Any Banach space is a Frechet space. In this study the homogenous polynomials on the Banach space will be defined, andthe proofs of some results corcerning the derivatives of these polynomials will be given. This study consists of three parts; In the first part, the essential information necessary for our study is given. In the second part, the results concerning measure spaces are examined and L spaces which are Banach spaces are introdu ced. In the third part the Frechet spaces are defined, and the homogenous derivatives of homogenous polynomials described on the mentioned spaces are examined.
Description
Keywords
Matematik, Holomorf Fonksiyon, Uzay, Mathematics, Holomorphic Function, Space
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
62