Investigation of Gamma and Neutron Radiation Shielding Properties of Ceramics Produced Using Some Lanthanide Compounds
Abstract
Herhangi bir radyasyon tehlikesine karşı alınabilecek birincil önlem zırhlamadır. Zırhlama, radyasyondan kaynaklı zararlı etkileri azaltmak için kullanılan bir önemli yöntemdir. Zırh malzemesi, bu amaç için üretilen koruyucu engellerdir. Bu koruyucu engeller üretilirken radyasyonun türü ve enerjisi dikkate alınmak zorundadır. Bunun nedeni, yüksek atom numarasına sahip element içeren malzemelerin yüksek enerjili fotonları zayıflatmak için kullanılması, düşük atom numaralı malzemelerin ise nötron parçacıklarını zayıflatmak için kullanılmasıdır. Zırh malzemesi üretiminde dikkat edilmesi gereken birkaç önemli noktalar vardır. Bunları şu şekilde sıralamak uygundur: i) zırh malzemesinin kolay üretimi; ii) doğaya zarar vermemelidir; iii) Maliyet ucuz olmalıdır. Bu üç önemli niteliğe sahip olan seramik malzemeler etkili zırh malzemeleri olarak kullanılmaktadır. Bu çalışmada, lantanit bileşikleri içeren farklı türdeki seramiklerin iyonlaştırıcı gama radyasyonuna karşı koruyucu malzeme olarak kullanılabilirliğini belirlemek amacıyla geleneksel yöntemler kullanılarak üretildi. Üretilen malzemelerin iyonize foton zırhlama özelliklerini araştırmak için, 133Ba radyoizotopundan yayılan 81, 160, 223, 302, 356 ve 383 keV enerjilerde foton yoğunlukları (I ve I0) deneysel olarak ölçüldü ve ardından kütle zayıflama katsayısı (µm), Doğrusal zayıflama katsayıları (μ, cm-1), yarı değer kalınlığı (HVL), ortalama serbest yol (MFP), etkili atom numaraları (Zetk) ve elektron yoğunlukları (Nel) deneysel olarak türetilmiştir. Elde edilen sonuçlar EpiXS programından hesaplanan değerlerle karşılaştırıldı. Ayrıca hızlı nötronlar için eşdeğer absorbe doz (EAD) değerleri, Canberra NP-100B serisinden BF3 gaz orantılı nötron dedektörü ve 10 mCi aktiviteye sahip 241Am/Be nötron kaynağı kullanılarak ölçüldü. Ayrıca seramiklerin hızlı nötron zırhlama parametreleri (ΣR) de teorik olarak hesaplanmıştır. Anahtar kelimeler: Lantanitli bileşikler, Radyasyon, Radyasyon zırhlama, Seramik
The primary precaution that can be taken against any radiation hazard is shielding. Shielding is an important method used to reduce the harmful effects of radiation. Shield material is protective barriers produced for this purpose. When producing these protective barriers, the type and energy of radiation must be taken into account. This is because materials containing elements with high atomic numbers are used to attenuate high-energy photons, while materials with low atomic numbers are used to attenuate neutron particles. There are a few important points to consider in the production of armor material. It is convenient to list them as follows: i) easy production of armor material; ii) should not harm nature; iii) The cost should be cheap. Ceramic materials with these three important qualities are used as effective armor materials. In this study, different types of ceramics containing lanthanide compounds were produced using conventional methods to determine their usability as protective materials against ionizing gamma radiation.To investigate the ionized photon shielding properties of the fabricated materials, the photon intensities (I and I0) was experimentally measured at 81, 160, 223, 302, 356, and 383 keV energies emitted from 133Barium radioisotope, and then the mass attenuation coefficient (µρ), The linear attenuation coefficients (µ, cm-1), half-value thickness (Δ0.5), mean free path (λ), effective atomic numbers (Zeff) and electron densities (Nel) were derived experimentally. Obtained results were benchmarked with the calculated values from the EpiXS program. And also equivalent absorbed dose (EAD) values for fast neutrons were measured using BF3 gas proportional neutron detector from the Canberra NP-100B series and a 241Am/Be neutron source with a 10 mCi activity. In addition, fast neutron shielding parameters (ΣR) of ceramics were also computed theoretically. Keywords: Ceramic, Lanthanide compounds, Radiation, Radiation shielding
The primary precaution that can be taken against any radiation hazard is shielding. Shielding is an important method used to reduce the harmful effects of radiation. Shield material is protective barriers produced for this purpose. When producing these protective barriers, the type and energy of radiation must be taken into account. This is because materials containing elements with high atomic numbers are used to attenuate high-energy photons, while materials with low atomic numbers are used to attenuate neutron particles. There are a few important points to consider in the production of armor material. It is convenient to list them as follows: i) easy production of armor material; ii) should not harm nature; iii) The cost should be cheap. Ceramic materials with these three important qualities are used as effective armor materials. In this study, different types of ceramics containing lanthanide compounds were produced using conventional methods to determine their usability as protective materials against ionizing gamma radiation.To investigate the ionized photon shielding properties of the fabricated materials, the photon intensities (I and I0) was experimentally measured at 81, 160, 223, 302, 356, and 383 keV energies emitted from 133Barium radioisotope, and then the mass attenuation coefficient (µρ), The linear attenuation coefficients (µ, cm-1), half-value thickness (Δ0.5), mean free path (λ), effective atomic numbers (Zeff) and electron densities (Nel) were derived experimentally. Obtained results were benchmarked with the calculated values from the EpiXS program. And also equivalent absorbed dose (EAD) values for fast neutrons were measured using BF3 gas proportional neutron detector from the Canberra NP-100B series and a 241Am/Be neutron source with a 10 mCi activity. In addition, fast neutron shielding parameters (ΣR) of ceramics were also computed theoretically. Keywords: Ceramic, Lanthanide compounds, Radiation, Radiation shielding
Description
Keywords
Radyoloji ve Nükleer Tıp, Radiology and Nuclear Medicine
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
149