Hyers-Ulam Stability in Some Differential Equation Models
Abstract
Bu doktora tezi on bölümden oluşmaktadır. Tezin birinci bölümünde tez konusu ile ilgili bazı temel bilgiler verildi. İkinci bölümde tez konusu ile ilgili literatürde bulunan bazı bilimsel çalışmalar özet olarak verildi. Üçüncü bölümde bu tezde kullanılacak olan materyal ve yöntem belirtildi. Tezin dördüncü bölümünde ise tez konusu ile ilgili bazı temel tanımlar, teoremler ve sonuçlar verildi. Tezin beşinci bölümünde, ele alınan çoklu sabit gecikmeli lineer olmayan bir Volterra integro- diferansiyel denklem için HU ve HUR kararlılıkları Chebyshev norm tanımı göz önüne alınarak Pachpatte eşitsizliği yardımıyla incelenip, buna ait sonuçlar verilmiştir. Tezin altıncı bölümünde, çoklu değişken gecikmeli lineer olmayan bir diferansiyel denklem için HU ve GHUR kararlılıklarına ait sonuçlar Chebyshev norm tanımı göz önüne alınarak soyut Gronwall lemma yardımıyla elde edilmiştir. Tezin yedinci bölümünde ise mertebeden yinelemeli bir Volterra integro- diferansiyel denklem için HU, HUR ve -semi-HU kararlılıklarına ait sonuçlar Bielecki metrik yardımı ile elde edilmiştir. Sekizinci bölümde ise gecikmeli kesir mertebeli bir denklemin HU kararlılığı Bielecki metrik tanımı göz önüne alınarak incelenmiştir. Dokuzuncu bölümde ise sapma bileşenli bir Volterra integral denkleminin HUR kararlılığı Bielecki norm tanımı göz önüne alınarak Gronwall lemma yardımıyla gösterilmiştir. Son olarak bu doktora tezinin onuncu bölümünde ise bu tezde yapılan çalışmalar ile ilgili tartışma ve sonuç kısmı verildi.
This PhD thesis consists of nine chapters. In the first chapter of thesis, some basic information with regard to the subject of the thesis are given. In the second chapter, some scientific works that can be found in the literature, which are related to the thesis topic, are summarized briefly. In the third chapter of thesis, the materials and methods to be used in this thesis are introduced. In the fourth chapter of thesis, some basic definitions, theorems and lemmas with regard to the thesis topic are given. In the fifth chapter of the thesis, the stabilities of HU and HUR for a nonlinear Volterra integro-differential equation with multiple fixed lags are investigated by taking into account the Chebyshev norm definition and the results related to these are given. In the sixth chapter of the thesis, the results related to the stabilities of HU and GHUR for a nonlinear differential equation with multiple variable lags are obtained by taking into account the Chebyshev norm definition and the abstract Gronwall lemma. In the seventh chapter of the thesis, the results related to the stabilities of HU, HUR and -semi-HU for a Volterra integro-differential equation with order 1 iterated are obtained by taking into account the Bielecki metric definition. In the eighth chapter, the stability of HU of a fractional order equation with delay is investigated by taking into account the Bielecki metric definition. In the ninth chapter, the stability of HUR of a Volterra integro-differential equation with deviating argument is shown by taking into account the Bielecki norm definition and the Gronwall lemma. Finally, in the tenth chapter of thesis, discussion and conclusion with regard to content of this PhD thesis are given.
This PhD thesis consists of nine chapters. In the first chapter of thesis, some basic information with regard to the subject of the thesis are given. In the second chapter, some scientific works that can be found in the literature, which are related to the thesis topic, are summarized briefly. In the third chapter of thesis, the materials and methods to be used in this thesis are introduced. In the fourth chapter of thesis, some basic definitions, theorems and lemmas with regard to the thesis topic are given. In the fifth chapter of the thesis, the stabilities of HU and HUR for a nonlinear Volterra integro-differential equation with multiple fixed lags are investigated by taking into account the Chebyshev norm definition and the results related to these are given. In the sixth chapter of the thesis, the results related to the stabilities of HU and GHUR for a nonlinear differential equation with multiple variable lags are obtained by taking into account the Chebyshev norm definition and the abstract Gronwall lemma. In the seventh chapter of the thesis, the results related to the stabilities of HU, HUR and -semi-HU for a Volterra integro-differential equation with order 1 iterated are obtained by taking into account the Bielecki metric definition. In the eighth chapter, the stability of HU of a fractional order equation with delay is investigated by taking into account the Bielecki metric definition. In the ninth chapter, the stability of HUR of a Volterra integro-differential equation with deviating argument is shown by taking into account the Bielecki norm definition and the Gronwall lemma. Finally, in the tenth chapter of thesis, discussion and conclusion with regard to content of this PhD thesis are given.
Description
Keywords
Matematik, Mathematics
Turkish CoHE Thesis Center URL
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
108