YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

Signature of Conservation Laws and Solitary Wave Solution With Different Dynamics in Thomas–fermi Plasma: Lie Theory

dc.authorscopusid 59146615700
dc.authorscopusid 57213314244
dc.authorscopusid 57220583847
dc.authorscopusid 56638410400
dc.contributor.author Fayyaz, M.
dc.contributor.author Riaz, M.B.
dc.contributor.author Rehman, M.J.U.
dc.contributor.author Tunç, O.
dc.date.accessioned 2025-05-10T16:55:06Z
dc.date.available 2025-05-10T16:55:06Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp Fayyaz M., Department of Mathematics, University of Management and Technology Lahore, Pakistan; Riaz M.B., IT4Innovations, VSB – Technical University of Ostrava, Ostrava, Czech Republic, Department of Computer Science and Mathematics, Lebanese American University, Byblos, Lebanon; Rehman M.J.U., Department of Mathematics, Quaid-I-Azam University, Islamabad, 45320, Pakistan; Tunç O., Department of Computer Programing, Baskale Vocational School, Van Yuzuncu Yil University, Van, Campus, 65080, Turkey en_US
dc.description.abstract We propose a Lie group method to discuss the modified KP equation appearing in Thomas–Fermi (TM) plasma, characterised by cold and hot electrons. The Lie method facilitates the identification of similarity reductions, infinitesimal symmetries, group-invariant solutions, and novel analytical solutions for nonlinear models. The similarity reduction method is carried out to transform the nonlinear partial differential equations (NLPDE) into the nonlinear ordinary differential equations (NLODE). This study focuses on solitary wave profiles due to their usefulness in various engineering applications, including monitoring public transportation systems, managing coastlines, and mitigating disaster risks. It also addresses the conservation laws associated with the modified KP equation. The generalised auxiliary equation (GAEM) scheme is used to compute the new solitary wave patterns of the modified KP equation, which explains the dynamics of nonlinear waves in Thomas–Fermi plasma. The idea of nonlinear self-adjointness is used to compute the conservation laws of the examined model. The graphical behaviour of some solutions is represented by adjusting the suitable value of the parameters involved. © 2024 The Authors en_US
dc.description.sponsorship European Commission, EC, (.10.03.01/00/22_003/0000048); European Commission, EC en_US
dc.identifier.doi 10.1016/j.padiff.2024.100923
dc.identifier.issn 2666-8181
dc.identifier.scopus 2-s2.0-85203983335
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.padiff.2024.100923
dc.identifier.uri https://hdl.handle.net/20.500.14720/3375
dc.identifier.volume 12 en_US
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.relation.ispartof Partial Differential Equations in Applied Mathematics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Conservation Laws en_US
dc.subject Generalised Auxiliary Equation Method en_US
dc.subject Lie Theory en_US
dc.subject Modified Kp Equation en_US
dc.subject Solitary Wave Solutions en_US
dc.title Signature of Conservation Laws and Solitary Wave Solution With Different Dynamics in Thomas–fermi Plasma: Lie Theory en_US
dc.type Article en_US

Files