YYÜ GCRIS Basic veritabanının içerik oluşturulması ve kurulumu Research Ecosystems (https://www.researchecosystems.com) tarafından devam etmektedir. Bu süreçte gördüğünüz verilerde eksikler olabilir.
 

The Unit-Cauchy Quantile Regression Model With Variates Observed on (0, 1): Percentages, Proportions, and Fractions

dc.authorscopusid 57524658600
dc.authorscopusid 7403385894
dc.contributor.author Arslan, T.
dc.contributor.author Yu, K.
dc.date.accessioned 2025-06-01T20:08:12Z
dc.date.available 2025-06-01T20:08:12Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Arslan T.] Department of Econometrics, Van Van Yüzüncü Yıl University, Van, 65080, Turkey, Department of Mathematics, Brunel University London, London, UB83PH, United Kingdom; [Yu K.] Department of Mathematics, Brunel University London, London, UB83PH, United Kingdom en_US
dc.description.abstract In this study, a new parametric quantile regression model is introduced as an alternative to the beta regression and Kumaraswamy quantile regression model. The proposed quantile regression model is obtained by reparametrization of the unit-Cauchy distribution in terms of its quantiles. The model parameters are estimated using the maximum likelihood method. A Monte-Carlo simulation study is conducted to show the efficiency of the maximum likelihood estimation of the model parameters. The implementation of the proposed quantile regression model is shown by using real datasets. Quantile regression models based on unit-Weibull, unit generalized half normal, and unit Burr XII are also considered in the applications. The application results show that the proposed quantile regression model is preferable over its rivals when several comparison criteria are taken into account. In addition, the fitting plots indicate that the proposed quantile regression model fits extreme observations on the right tail better than its strong rivals, which is important in quantile regression modeling. © 2025, Hacettepe University. All rights reserved. en_US
dc.description.sponsorship Brunel University London, BUL en_US
dc.identifier.doi 10.15672/hujms.1533205
dc.identifier.endpage 655 en_US
dc.identifier.issn 2651-477X
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-105005533327
dc.identifier.scopusquality Q3
dc.identifier.startpage 633 en_US
dc.identifier.uri https://doi.org/10.15672/hujms.1533205
dc.identifier.uri https://hdl.handle.net/20.500.14720/25063
dc.identifier.volume 54 en_US
dc.identifier.wosquality Q3
dc.language.iso en en_US
dc.publisher Hacettepe University en_US
dc.relation.ispartof Hacettepe Journal of Mathematics and Statistics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Maximum Likelihood en_US
dc.subject Monte-Carlo Simulation en_US
dc.subject Parametric Model en_US
dc.subject Quantile Regression en_US
dc.subject Unit-Cauchy en_US
dc.title The Unit-Cauchy Quantile Regression Model With Variates Observed on (0, 1): Percentages, Proportions, and Fractions en_US
dc.type Article en_US

Files