Unit Group of Integral Group Ring Z(G X C 3 )
dc.authorscopusid | 56976417200 | |
dc.contributor.author | Kusmus, Omer | |
dc.date.accessioned | 2025-05-10T17:34:36Z | |
dc.date.available | 2025-05-10T17:34:36Z | |
dc.date.issued | 2024 | |
dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
dc.department-temp | [Kusmus, Omer] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye | en_US |
dc.description.abstract | Presenting an explicit descryption of unit group in the integral group ring of a given non-abelian group is a classical and open problem. Let S3 be a symmetric group of order 6 and C3 be a cyclic group of order 3. In this study, we firstly explore the commensurability in unit group of integral group ring Z(S3 xC3) by showing the existence of a subgroup as (F55 & rtimes; F3) & rtimes; (S & lowast;3 xC2) where F rho denotes a free group of rank rho. Later, we introduce an explicit structure of the unit group in Z(S3 x C3) in terms of semi-direct product of torsion-free normal complement of S3 and the group of units in RS3 where R = Z[w] is the complex integral domain since w is the primitive 3rd root of unity. At the end, we give a general method that determines the structure of the unit group of Z(GxC3) for an arbitrary group G depends on torsion-free normal complement V (G) of Gin U(Z(G xC3)) in an implicit form. As a consequence, a conjecture which is found in [21] is solved. | en_US |
dc.description.woscitationindex | Science Citation Index Expanded | |
dc.identifier.doi | 10.18514/MMN.2024.4666 | |
dc.identifier.issn | 1787-2405 | |
dc.identifier.issn | 1787-2413 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85212344895 | |
dc.identifier.scopusquality | Q3 | |
dc.identifier.uri | https://doi.org/10.18514/MMN.2024.4666 | |
dc.identifier.uri | https://hdl.handle.net/20.500.14720/13859 | |
dc.identifier.volume | 25 | en_US |
dc.identifier.wos | WOS:001402251100022 | |
dc.identifier.wosquality | Q2 | |
dc.institutionauthor | Kusmus, Omer | |
dc.language.iso | en | en_US |
dc.publisher | Univ Miskolc inst Math | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Unit Group | en_US |
dc.subject | Integral Group Ring | en_US |
dc.subject | Symmetric Group | en_US |
dc.subject | Direct Product | en_US |
dc.title | Unit Group of Integral Group Ring Z(G X C 3 ) | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |