Unit Group of Integral Group Ring Z(G X C 3 )

dc.authorscopusid 56976417200
dc.contributor.author Kusmus, Omer
dc.date.accessioned 2025-05-10T17:34:36Z
dc.date.available 2025-05-10T17:34:36Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Kusmus, Omer] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye en_US
dc.description.abstract Presenting an explicit descryption of unit group in the integral group ring of a given non-abelian group is a classical and open problem. Let S3 be a symmetric group of order 6 and C3 be a cyclic group of order 3. In this study, we firstly explore the commensurability in unit group of integral group ring Z(S3 xC3) by showing the existence of a subgroup as (F55 & rtimes; F3) & rtimes; (S & lowast;3 xC2) where F rho denotes a free group of rank rho. Later, we introduce an explicit structure of the unit group in Z(S3 x C3) in terms of semi-direct product of torsion-free normal complement of S3 and the group of units in RS3 where R = Z[w] is the complex integral domain since w is the primitive 3rd root of unity. At the end, we give a general method that determines the structure of the unit group of Z(GxC3) for an arbitrary group G depends on torsion-free normal complement V (G) of Gin U(Z(G xC3)) in an implicit form. As a consequence, a conjecture which is found in [21] is solved. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.18514/MMN.2024.4666
dc.identifier.issn 1787-2405
dc.identifier.issn 1787-2413
dc.identifier.issue 2 en_US
dc.identifier.scopus 2-s2.0-85212344895
dc.identifier.scopusquality Q3
dc.identifier.uri https://doi.org/10.18514/MMN.2024.4666
dc.identifier.uri https://hdl.handle.net/20.500.14720/13859
dc.identifier.volume 25 en_US
dc.identifier.wos WOS:001402251100022
dc.identifier.wosquality Q2
dc.institutionauthor Kusmus, Omer
dc.language.iso en en_US
dc.publisher Univ Miskolc inst Math en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Unit Group en_US
dc.subject Integral Group Ring en_US
dc.subject Symmetric Group en_US
dc.subject Direct Product en_US
dc.title Unit Group of Integral Group Ring Z(G X C 3 ) en_US
dc.type Article en_US
dspace.entity.type Publication

Files