Homotopy Perturbation Method for a System of Fractal Schrödinger-Korteweg Vries Equations
| dc.authorscopusid | 57555731900 | |
| dc.authorscopusid | 57638459800 | |
| dc.authorscopusid | 6602933984 | |
| dc.authorscopusid | 57191480911 | |
| dc.authorscopusid | 57211987210 | |
| dc.contributor.author | Golmankhaneh, Alireza Khalili | |
| dc.contributor.author | Pham, Diana | |
| dc.contributor.author | Stamova, Ivanka | |
| dc.contributor.author | Ramazanova, Aysel | |
| dc.contributor.author | Rodriguez-Lopez, Rosana | |
| dc.date.accessioned | 2025-07-30T16:32:49Z | |
| dc.date.available | 2025-07-30T16:32:49Z | |
| dc.date.issued | 2025 | |
| dc.department | T.C. Van Yüzüncü Yıl Üniversitesi | en_US |
| dc.department-temp | [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Dept Phys, Ur C, Orumiyeh 63896, West Azerbaijan, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye; [Pham, Diana] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA; [Stamova, Ivanka] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA; [Ramazanova, Aysel] Univ Duisburg Essen, Fak Math Nichtlineare Optimierung, Thea Leymann Str 9, D-45127 Essen, Germany; [Rodriguez-Lopez, Rosana] Univ Santiago de Compostela, Dept Estat Analise Matemat & Optimizac, Fac Matemat, Santiago De Compostela 15782, Spain | en_US |
| dc.description.abstract | This paper presents a novel application of the Homotopy Perturbation Method (HPM) to a system of coupled fractal Schr & ouml;dinger-Korteweg-de Vries (S-KdV) equations, formulated within the framework of fractal calculus. By extending classical S-KdV equations and diffusion-reaction systems to fractal space, we introduce a new mathematical model that captures the complex behavior of nonlinear wave interactions and reaction-diffusion processes in media with fractal geometries. The main contribution of this work lies in deriving approximate analytical solutions for these fractal systems using HPM, demonstrating both its effectiveness and accuracy in handling fractal differential equations. The influence of fractal time and space on the system dynamics is examined and visualized through detailed graphical analysis. This study provides a foundation for further exploration of fractal models in physical and engineering contexts, offering insights into how fractality alters classical system behavior. | en_US |
| dc.description.woscitationindex | Science Citation Index Expanded | |
| dc.identifier.doi | 10.1140/epjs/s11734-025-01807-5 | |
| dc.identifier.issn | 1951-6355 | |
| dc.identifier.issn | 1951-6401 | |
| dc.identifier.scopus | 2-s2.0-105011269283 | |
| dc.identifier.scopusquality | Q2 | |
| dc.identifier.uri | https://doi.org/10.1140/epjs/s11734-025-01807-5 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.14720/28083 | |
| dc.identifier.wos | WOS:001532489100001 | |
| dc.identifier.wosquality | Q2 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer Heidelberg | en_US |
| dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.title | Homotopy Perturbation Method for a System of Fractal Schrödinger-Korteweg Vries Equations | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication |