Homotopy Perturbation Method for a System of Fractal Schrödinger-Korteweg Vries Equations

dc.authorscopusid 57555731900
dc.authorscopusid 57638459800
dc.authorscopusid 6602933984
dc.authorscopusid 57191480911
dc.authorscopusid 57211987210
dc.contributor.author Golmankhaneh, Alireza Khalili
dc.contributor.author Pham, Diana
dc.contributor.author Stamova, Ivanka
dc.contributor.author Ramazanova, Aysel
dc.contributor.author Rodriguez-Lopez, Rosana
dc.date.accessioned 2025-07-30T16:32:49Z
dc.date.available 2025-07-30T16:32:49Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Golmankhaneh, Alireza Khalili] Islamic Azad Univ, Dept Phys, Ur C, Orumiyeh 63896, West Azerbaijan, Iran; [Golmankhaneh, Alireza Khalili] Van Yuzuncu Yil Univ, Fac Sci, Dept Math, TR-65080 Van, Turkiye; [Pham, Diana] Univ Texas Arlington, Dept Biol, Arlington, TX 76019 USA; [Stamova, Ivanka] Univ Texas San Antonio, Dept Math, San Antonio, TX 78249 USA; [Ramazanova, Aysel] Univ Duisburg Essen, Fak Math Nichtlineare Optimierung, Thea Leymann Str 9, D-45127 Essen, Germany; [Rodriguez-Lopez, Rosana] Univ Santiago de Compostela, Dept Estat Analise Matemat & Optimizac, Fac Matemat, Santiago De Compostela 15782, Spain en_US
dc.description.abstract This paper presents a novel application of the Homotopy Perturbation Method (HPM) to a system of coupled fractal Schr & ouml;dinger-Korteweg-de Vries (S-KdV) equations, formulated within the framework of fractal calculus. By extending classical S-KdV equations and diffusion-reaction systems to fractal space, we introduce a new mathematical model that captures the complex behavior of nonlinear wave interactions and reaction-diffusion processes in media with fractal geometries. The main contribution of this work lies in deriving approximate analytical solutions for these fractal systems using HPM, demonstrating both its effectiveness and accuracy in handling fractal differential equations. The influence of fractal time and space on the system dynamics is examined and visualized through detailed graphical analysis. This study provides a foundation for further exploration of fractal models in physical and engineering contexts, offering insights into how fractality alters classical system behavior. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1140/epjs/s11734-025-01807-5
dc.identifier.issn 1951-6355
dc.identifier.issn 1951-6401
dc.identifier.scopus 2-s2.0-105011269283
dc.identifier.scopusquality Q2
dc.identifier.uri https://doi.org/10.1140/epjs/s11734-025-01807-5
dc.identifier.uri https://hdl.handle.net/20.500.14720/28083
dc.identifier.wos WOS:001532489100001
dc.identifier.wosquality Q2
dc.language.iso en en_US
dc.publisher Springer Heidelberg en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Homotopy Perturbation Method for a System of Fractal Schrödinger-Korteweg Vries Equations en_US
dc.type Article en_US
dspace.entity.type Publication

Files