Parameter Reduction for PMV Prediction Via Data Driven Approaches Using the ASHRAE Global Thermal Comfort Database II and Chinese Dataset

dc.authorid Camci, Muhammet/0000-0003-4283-1307
dc.authorid Dalkilic, Ahmet Selim/0000-0002-5743-3937
dc.authorid Karakoyun, Yakup/0000-0003-1868-452X
dc.authorid Rahmanparast, Amir/0000-0002-3648-2262
dc.authorwosid Rahmanparast, Amir/Kpy-5143-2024
dc.authorwosid Camci, Muhammet/A-5826-2017
dc.authorwosid Dalkilic, Ahmet Selim/G-2274-2011
dc.authorwosid Karakoyun, Yakup/Abe-7401-2020
dc.authorwosid Dalkılıç, Ahmet/G-2274-2011
dc.authorwosid Milani, Muhammed/Aab-6511-2020
dc.authorwosid Camci, Muhammet/A-5826-2017
dc.contributor.author Rahmanparast, Amir
dc.contributor.author Milani, Muhammed
dc.contributor.author Camci, Muhammet
dc.contributor.author Karakoyun, Yakup
dc.contributor.author Dalkilic, Ahmet Selim
dc.date.accessioned 2025-07-30T16:33:31Z
dc.date.available 2025-07-30T16:33:31Z
dc.date.issued 2025
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Rahmanparast, Amir; Dalkilic, Ahmet Selim] Yildiz Tech Univ, Mech Engn Fac, Dept Mech Engn, TR-34349 Istanbul, Turkiye; [Milani, Muhammed] Bandirma Onyedi Eylul Univ, Engn & Nat Sci Fac, Dept Comp Engn, TR-10200 Bandirma, Turkiye; [Camci, Muhammet] Siirt Univ, Engn Fac, Dept Mech Engn, TR-56100 Siirt, Turkiye; [Karakoyun, Yakup] Van Yuzuncu Yil Univ, Engn Fac, Dept Mech Engn, TR-65080 Van, Turkiye en_US
dc.description Camci, Muhammet/0000-0003-4283-1307; Dalkilic, Ahmet Selim/0000-0002-5743-3937; Karakoyun, Yakup/0000-0003-1868-452X; Rahmanparast, Amir/0000-0002-3648-2262 en_US
dc.description.abstract Thermal comfort significantly impacts building occupants' well-being, efficiency, and energy consumption. In this research, ASHRAE Thermal Comfort Database II, a comprehensive dataset consisting of 85,583 thermal comfort observation records, was used to develop ML models that can predict Fanger's PMV. While implementing the proposed model, feature selection analyses were used to indicate the importance of the parameters. The objective of the study is to reduce the factors to predict PMV from six (Tr, Va, Ta, clo, RH, and M) to three (Ta, clo, and M), keeping the predictions accurate and considering new, practical, and cost-effective aspects as the second work in the literature on the reduction of PMV factors having the higher accuracy. In the work, 10 ML techniques were evaluated, and the XGBoost model showed superior performance. The model attains remarkable outcomes for accuracy and interpretability by emphasizing critical characteristics: Ta, clo, and M. The research reveals that optimized version of XGBoost can improve the accuracy rate of PMV prediction to 96.29 % with 0.93 R2,0.124 MAE and 0.93 CV-R2 Mean values, while Lasso, the least accurate model among the 10 tested models, achieves an accuracy rate of 59.63 % with 0.22 R2, 0.478 MAE and 0.22 CV-R2 Mean values. The validation has been performed with various methods including cross-validation with ASHRAE Thermal Comfort Database II and fine-tuning using the Chinese Thermal Comfort Dataset containing 41,977 records. This work aims to increase the popularity of PMV usage, providing a practical and generalized solution suitable for a broad audience. en_US
dc.description.sponsorship Yildiz Technical University Scientific Research Projects Coordination Depart-ment [FBA-2025-6705] en_US
dc.description.sponsorship The authors would like to acknowledge that this paper is submitted in partial fulfillment of the requirements for PhD degree at Yildiz Technical University. This study has been financially supported by Yildiz Technical University Scientific Research Projects Coordination Depart-ment, Project Number: FBA-2025-6705. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.applthermaleng.2025.127553
dc.identifier.issn 1359-4311
dc.identifier.issn 1873-5606
dc.identifier.scopus 2-s2.0-105010700671
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.applthermaleng.2025.127553
dc.identifier.volume 279 en_US
dc.identifier.wos WOS:001550601500006
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Pergamon-Elsevier Science Ltd en_US
dc.relation.ispartof Applied Thermal Engineering en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Thermal Comfort en_US
dc.subject Machine Learning en_US
dc.subject Feature Selection en_US
dc.subject SHAP en_US
dc.subject XGBoost en_US
dc.subject PMV en_US
dc.title Parameter Reduction for PMV Prediction Via Data Driven Approaches Using the ASHRAE Global Thermal Comfort Database II and Chinese Dataset en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article

Files