Pythagorean Fuzzy Swara Weighting Technique for Soil Quality Modeling of Cultivated Land in Semi-Arid Terrestrial Ecosystems

dc.authorid Alaboz, Pelin/0000-0001-7345-938X
dc.authorscopusid 57219268557
dc.authorscopusid 56297811900
dc.authorscopusid 24829167700
dc.authorscopusid 16052385200
dc.authorwosid Karaca, Siyami/Grr-8400-2022
dc.authorwosid Dengiz, Orhan/Abg-7284-2020
dc.authorwosid Alaboz, Pelin/Abf-5309-2020
dc.contributor.author Sargin, Bulut
dc.contributor.author Alaboz, Pelin
dc.contributor.author Karaca, Siyami
dc.contributor.author Dengiz, Orhan
dc.date.accessioned 2025-05-10T17:25:23Z
dc.date.available 2025-05-10T17:25:23Z
dc.date.issued 2024
dc.department T.C. Van Yüzüncü Yıl Üniversitesi en_US
dc.department-temp [Sargin, Bulut; Karaca, Siyami] Van Yuzuncu Yil Univ, Fac Agr, Dept Soil Sci, Van, Turkiye; [Sargin, Bulut; Karaca, Siyami] Van Yuzuncu Yil Univ, Fac Agr, Plant Nutr Dept, Van, Turkiye; [Alaboz, Pelin] Isparta Univ Appl Sci, Fac Agr, Dept Soil Sci & Plant Nutr, Isparta, Turkiye; [Dengiz, Orhan] Ondokuz Mayis Univ, Fac Agr, Dept Soil Sci & Plant Nutr, Samsun, Turkiye en_US
dc.description Alaboz, Pelin/0000-0001-7345-938X en_US
dc.description.abstract Currently, the assessment of soil quality and creating digital soil maps are crucial for sustainable land management. In the present study, the main objective is to evaluate soil quality around Lake Van's agricultural areas using Pythagorean Fuzzy SWARA (PF-SWARA) weighting for soil indicator assessment. Additionally, the predictability of soil quality is demonstrated through spatial distribution maps using random forest (RF) and artificial neural network (ANN) algorithms. PF-SWARA weighting assigns higher weights to indicators of physical quality. Soil quality index (SQI) values for the study area range between 0.36 and 0.74, classified as "from very low to high." RF and ANN models provide Lin's concordance correlation coefficient (LCCC) values of 0.93 and 0.87, respectively, for soil quality prediction. The RF model exhibits the lowest error rate (root mean square error (RMSE): 0.03; mean absolute percentage error (MAPE): 4.51%). The RF algorithm identified pH, available phosphorus, organic matter, CaCO3 and electrical conductivity as the most effective soil properties for estimating SQI. Ordinary Kriging geostatistical interpolation is identified as the interpolation method with the lowest RMSE value based on observed and predicted values' spatial distribution maps using Gaussian semivariogram from the geostatistical model. The study concludes that machine learning algorithms can be utilized alongside PF-SWARA approaches for digital soil quality mapping. en_US
dc.description.woscitationindex Science Citation Index Expanded
dc.identifier.doi 10.1016/j.compag.2024.109466
dc.identifier.issn 0168-1699
dc.identifier.issn 1872-7107
dc.identifier.scopus 2-s2.0-85205807805
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1016/j.compag.2024.109466
dc.identifier.uri https://hdl.handle.net/20.500.14720/11355
dc.identifier.volume 227 en_US
dc.identifier.wos WOS:001334952800001
dc.identifier.wosquality Q1
dc.language.iso en en_US
dc.publisher Elsevier Sci Ltd en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Digital Soil Mapping en_US
dc.subject Soil Quality en_US
dc.subject Multi-Criteria Decision Making en_US
dc.subject Machine Learning en_US
dc.title Pythagorean Fuzzy Swara Weighting Technique for Soil Quality Modeling of Cultivated Land in Semi-Arid Terrestrial Ecosystems en_US
dc.type Article en_US
dspace.entity.type Publication

Files